Entry Handley:1997:DSM from tcs1995.bib
Last update: Sun Oct 15 02:56:11 MDT 2017
Top |
Symbols |
Numbers |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Handley:1997:DSM,
author = "W. G. Handley",
title = "Deterministic summation modulo {$B_n$}, the semigroup
of binary relations on {$0, 1, \ldots{}, n-1$}",
journal = j-THEOR-COMP-SCI,
volume = "172",
number = "1--2",
pages = "135--174",
day = "10",
month = feb,
year = "1997",
CODEN = "TCSCDI",
ISSN = "0304-3975 (print), 1879-2294 (electronic)",
ISSN-L = "0304-3975",
bibdate = "Mon Jul 19 22:20:35 MDT 1999",
bibsource = "http://www.elsevier.com/cgi-bin/cas/tree/store/tcs/cas_free/browse/browse.cgi?year=1997&volume=172&issue=1-2;
http://www.math.utah.edu/pub/tex/bib/tcs1995.bib",
URL = "http://www.elsevier.com/cgi-bin/cas/tree/store/tcs/cas_sub/browse/browse.cgi?year=1997&volume=172&issue=1-2&aid=2186",
acknowledgement = ack-nhfb,
classification = "C4210 (Formal logic); C4220 (Automata theory)",
corpsource = "BUCS, Bath Univ., UK",
fjournal = "Theoretical Computer Science",
journal-URL = "http://www.sciencedirect.com/science/journal/03043975/",
keywords = "Bel'tyukov's stack register machines; binary
relations; Boolean functions; boolean operations;
bounded first-order quantification; bounded product;
bounded quantification; bounded summation;
deterministic summation module; elementary functions;
monoid; permutations; semigroup; Turing machines",
pubcountry = "Netherlands",
treatment = "P Practical; T Theoretical or Mathematical",
}
Related entries
- binary,
137(2)237,
138(1)67,
140(2)333,
141(1)283,
141(1)311,
143(2)353,
144(1)251,
145(1)45,
145(1)271,
145(1)317,
146(1)243,
147(1)1,
150(1)77,
154(1)41,
155(2)425,
156(1)39,
156(1)315,
158(1)53,
158(1)81,
160(1)305,
169(1)67,
174(1)67,
177(1)3,
179(1)251,
179(1)301,
180(1)47,
181(1)119,
181(1)181,
182(1)145,
188(1)1,
188(1)241,
197(1)111,
218(1)161,
220(2)363
- boolean,
134(1)51,
137(1)109,
137(1)159,
137(2)237,
138(2)353,
139(1)187,
141(1)283,
143(2)335,
143(2)343,
145(1)45,
145(1)371,
155(2)411,
156(1)99,
157(2)139,
160(1)1,
160(1)321,
160(1)365,
161(1)141,
161(1)301,
163(1)1,
163(1)283,
168(1)39,
171(1)3,
172(1)233,
172(1)293,
174(1)137,
175(2)257,
175(2)337,
179(1)251,
179(1)427,
180(1)47,
180(1)155,
180(1)243,
182(1)257,
186(1)171,
188(1)117,
188(1)211,
190(2)317,
191(1)79,
197(1)247,
205(1)317,
207(2)329,
217(2)255,
223(1)193,
226(1)207
- bounded,
137(1)3,
139(1)131,
148(1)93,
151(1)163,
163(1)177,
164(1)59,
164(1)287,
166(1)203,
168(1)3,
168(1)21,
169(2)201,
172(1)195,
173(1)183,
175(2)309,
176(1)89,
176(1)283,
178(1)103,
181(1)141,
181(2)267,
182(1)145,
191(1)61,
193(1)53,
193(1)75,
193(1)113,
194(1)137,
194(1)247-1,
196(1)395,
204(1)11,
209(1)1
- deterministic,
138(2)273,
138(2)315,
142(1)59,
143(1)159,
143(2)269,
143(2)285,
145(1)391,
150(1)111,
152(2)219,
154(1)23,
154(2)183,
154(2)225,
156(1)71,
157(2)259,
157(2)273,
158(1)221,
159(1)43,
161(1)141,
161(1)301,
163(1)193,
165(2)275,
165(2)355,
165(2)475,
167(1)171,
168(1)39,
168(2)241,
170(1)209,
178(1)1,
179(1)251,
180(1)181,
180(1)217,
182(1)233,
183(2)281,
185(1)15,
185(1)63,
187(1)105,
190(1)41,
190(1)61,
191(1)37,
191(1)61,
192(1)55,
194(1)57,
194(1)163,
194(1)240-2,
195(1)3,
197(1)95,
198(1)99,
215(1)191,
225(1)1
- elementary,
137(1)53,
145(1)1,
152(2)171,
157(2)185,
178(1)77,
186(1)107,
197(1)248,
201(1)171
- first-order,
139(1)207,
142(2)141,
144(1)59,
146(1)69,
146(1)243,
148(2)261,
149(1)49,
149(1)67,
149(1)101,
152(1)91,
154(1)67,
156(1)177,
160(1)241,
160(1)271,
160(1)305,
165(1)3,
166(1)63,
170(1)173,
171(1)179,
173(1)151,
173(2)349,
173(2)393,
173(2)513,
176(1)67,
176(1)283,
184(1)237,
185(1)47,
185(2)217,
185(2)393,
192(2)315,
193(1)129,
194(1)247-1,
197(1)247-1,
208(1)179,
216(1)55,
222(1)55,
222(1)153
- module,
153(1)49,
153(1)245,
155(2)349,
159(2)143,
166(1)101,
172(1)303,
173(2)485,
177(2)407,
187(1)49,
192(1)3,
192(2)201,
194(1)248-1,
194(1)z,
197(1)246-1,
208(1)149
- modulo,
172(1)303,
174(1)137,
174(1)247,
224(1)215
- monoid,
145(1)229,
146(1)321,
148(2)227,
150(1)77,
158(1)81,
163(1)55,
163(1)259,
168(1)105,
174(1)67,
178(1)257,
183(1)45,
183(1)93,
191(1)117,
191(1)219,
194(1)57,
197(1)246-2,
204(1)35,
204(1)131,
204(1)169,
208(1)3,
225(1)149
- operation,
141(1)53,
143(1)51,
148(1)171,
149(1)179,
149(2)201,
154(2)165,
155(1)1,
156(1)1,
157(2)215,
160(1)87,
161(1)301,
164(1)1,
165(2)391,
166(1)173,
167(1)131,
173(1)151,
174(1)67,
175(1)183,
179(1)251,
180(1)17,
180(1)341,
181(2)379,
187(1)7,
190(2)363,
191(1)79,
191(1)117,
192(2)167,
192(2)201,
192(2)259,
194(1)242-2,
195(1)61,
196(1)347,
198(1)131,
200(1)1,
205(1)317,
207(1)73,
216(1)159
- order, first-,
139(1)207,
142(2)141,
144(1)59,
146(1)69,
146(1)243,
148(2)261,
149(1)49,
149(1)67,
149(1)101,
152(1)91,
154(1)67,
156(1)177,
160(1)241,
160(1)271,
165(1)3,
166(1)63,
170(1)173,
171(1)179,
173(1)151,
173(2)349,
173(2)393,
173(2)513,
176(1)67,
176(1)283,
184(1)237,
185(1)47,
185(2)217,
185(2)393,
192(2)315,
193(1)129,
194(1)247-1,
197(1)247-1,
208(1)179,
216(1)55,
222(1)55,
222(1)153
- permutation,
154(1)41,
156(1)301,
158(1)53,
159(1)15,
159(1)29,
170(1)129,
175(2)239,
178(1)103,
205(1)99,
225(1)177
- product,
138(2)425,
154(1)57,
154(2)387,
155(1)141,
163(1)245,
166(1)49,
179(1)203,
186(1)135,
187(1)123,
191(1)219,
192(1)107,
197(1)111
- quantification,
137(1)3,
183(2)187,
191(1)97,
193(1)75
- register,
140(2)319,
149(2)257,
168(2)267,
168(2)z,
178(1)37,
181(1)181,
203(1)3,
226(1)61
- relation,
137(2)237,
138(2)391,
139(1)275,
139(1)315,
140(1)139,
141(1)311,
143(2)251,
143(2)269,
147(1)165,
147(1)181,
148(2)227,
149(1)3,
149(1)129,
149(1)179,
149(2)201,
149(2)299,
149(2)333,
150(1)77,
150(1)161,
151(2)437,
152(2)171,
152(2)269,
152(2)285,
155(1)85,
156(1)281,
159(2)191,
159(2)245,
159(2)355,
160(1)1,
160(1)305,
162(1)5,
162(1)45,
165(1)3,
167(1)171,
168(1)155,
171(1)281,
172(1)309,
173(2)513,
174(1)67,
174(1)97,
175(2)373,
176(1)235,
176(1)283,
177(1)183,
179(1)103,
179(1)273,
180(1)1,
181(1)45,
184(1)105,
186(1)83,
186(1)157,
187(1)203,
188(1)211,
193(1)129,
195(2)183,
198(1)159,
206(1)283,
207(1)105,
209(1)237,
209(1)287,
215(1)263
- semigroup,
154(2)387,
161(1)157,
165(2)325,
168(1)105,
180(1)325,
183(1)83,
204(1)29
- stack,
173(1)183,
178(1)37
- summation,
163(1)245
- Turing,
138(1)67,
143(1)123,
143(1)159,
145(1)111,
148(1)33,
148(2)325,
158(1)193,
161(1)301,
162(1)45,
168(2)215,
168(2)241,
168(2)257,
168(2)267,
168(2)303,
168(2)321,
168(2)417,
168(2)461,
168(2)z,
174(1)203,
174(1)217,
180(1)139,
180(1)229,
180(1)341,
181(1)119,
182(1)159,
191(1)215,
192(2)315,
194(1)137,
197(1)79,
210(1)217,
217(1)3,
411(31)2999