Entry Bonsangue:1998:GMS from tcs1995.bib
Last update: Sun Oct 15 02:56:11 MDT 2017
Top |
Symbols |
Numbers |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Bonsangue:1998:GMS,
author = "M. M. Bonsangue and F. {van Breugel} and J. J. M. M.
Rutten",
title = "Generalized metric spaces: completion, topology, and
power domains via the {Yoneda} embedding",
journal = j-THEOR-COMP-SCI,
volume = "193",
number = "1--2",
pages = "1--51",
day = "28",
month = feb,
year = "1998",
CODEN = "TCSCDI",
ISSN = "0304-3975 (print), 1879-2294 (electronic)",
ISSN-L = "0304-3975",
bibdate = "Mon Jul 19 22:21:37 MDT 1999",
bibsource = "http://www.elsevier.com/cgi-bin/cas/tree/store/tcs/cas_free/browse/browse.cgi?year=1998&volume=193&issue=1-2;
http://www.math.utah.edu/pub/tex/bib/tcs1995.bib",
URL = "http://www.elsevier.com/cas/tree/store/tcs/sub/1998/193/1-2/2578.pdf",
acknowledgement = ack-nhfb,
classification = "C1160 (Combinatorial mathematics)",
corpsource = "Dept. of Comput. Sci., Rijks Univ., Leiden,
Netherlands",
fjournal = "Theoretical Computer Science",
journal-URL = "http://www.sciencedirect.com/science/journal/03043975/",
keywords = "Alexandroff topology; category theory; Cauchy
completion; chain completion; compact subset
hyperspace; completion; convex power domains;
enriched-categorical view; epsilon-ball topology;
generalized metric spaces; lower power domains; power
domains; preorders; Scott topology; topology; upper
power domains; Yoneda embedding",
pubcountry = "Netherlands",
treatment = "T Theoretical or Mathematical",
}
Related entries
- categorical, enriched-,
170(1)349
- category,
139(1)115,
146(1)5,
146(1)311,
147(1)137,
149(1)3,
150(1)57,
150(1)111,
151(1)3,
153(1)171,
153(1)211,
154(2)307,
155(1)1,
155(1)221,
159(2)355,
160(1)217,
164(1)207,
166(1)203,
170(1)277,
170(1)297,
170(1)349,
170(1)407,
175(1)29,
176(1)347,
177(1)3,
177(1)27,
177(1)73,
177(1)111,
179(1)203,
179(1)421,
184(1)61,
190(1)87,
193(1)113,
194(1)241-3,
194(1)246,
194(1)247,
195(1)61,
197(1)139,
198(1)49,
227(1)153
- Cauchy,
162(2)173,
170(1)349,
184(1)61,
193(1)113
- chain,
145(1)391,
147(1)267,
161(1)191,
161(1)289,
163(1)291,
164(1)185,
175(2)283,
205(1)85,
206(1)163
- compact,
138(1)141,
141(1)133,
146(1)311,
151(1)163,
166(1)221,
175(2)239,
177(1)111,
179(1)319,
181(2)379,
182(1)183,
193(1)53,
193(1)113,
193(1)181,
219(1)19,
219(1)65
- completion,
139(1)187,
142(2)141,
145(1)345,
146(1)199,
150(1)57,
151(1)z,
154(2)379,
159(2)143,
159(2)355,
165(1)171,
170(1)145,
176(1)67,
179(1)319,
182(1)245,
192(1)77,
227(1)153
- convex,
138(1)3,
140(2)205,
141(1)337,
155(2)321,
157(2)185,
159(1)65,
174(1)193,
188(1)59,
196(1)395,
197(1)203,
218(2)273
- domain,
151(1)163,
151(1)195,
151(1)257,
151(1)z,
152(1)67,
155(1)221,
155(1)267,
159(2)319,
159(2)355,
160(1)1,
162(2)225,
165(1)57,
166(1)49,
166(1)203,
170(1)349,
171(1)247,
172(1)1,
172(1)43,
173(1)113,
173(1)209,
175(1)3,
176(1)89,
177(1)111,
177(1)155,
179(1)203,
179(1)217,
179(1)319,
179(1)421,
187(1)203,
189(1)179,
193(1)53,
193(1)113,
193(1)181,
196(1)395,
197(1)246-2,
216(1)159,
219(1)19,
219(1)169,
222(1)153
- embedding,
145(1)345,
149(2)333,
154(1)41,
164(1)223,
175(2)337,
181(2)247,
181(2)337,
197(1)247-1,
228(1)253
- enriched-categorical,
170(1)349
- generalized,
137(1)129,
145(1)159,
151(1)257,
154(2)165,
155(1)141,
158(1)53,
160(1)305,
161(1)301,
170(1)349,
174(1)203,
174(1)269,
177(1)183,
188(1)221,
194(1)87,
197(1)248-1,
199(1)167,
200(1)313,
201(1)171,
215(1)191,
218(1)123
- lower,
140(2)301,
143(2)335,
145(1)45,
154(2)283,
155(2)411,
156(1)315,
157(2)139,
157(2)185,
157(2)259,
162(2)341,
163(1)177,
172(1)1,
172(1)293,
175(2)283,
179(1)251,
179(1)301,
181(1)119,
185(1)47,
188(1)59,
188(1)117,
194(1)163,
196(1)153,
197(1)95,
197(1)245-2,
209(1)47,
209(1)141,
209(1)389
- metric,
138(1)169,
138(2)273,
146(1)311,
150(1)57,
151(1)163,
151(1)195,
151(1)257,
162(1)45,
170(1)145,
170(1)349,
177(1)111,
179(1)217,
183(2)187,
184(1)61,
193(1)53,
193(1)97,
194(1)163,
202(1)55,
202(1)223,
219(1)439,
219(1)467
- power,
137(1)85,
139(1)27,
148(2)207,
148(2)261,
149(1)49,
149(1)67,
151(1)79,
155(1)39,
160(1)271,
160(1)321,
166(1)63,
168(2)417,
173(1)151,
174(1)137,
180(1)139,
182(1)159,
183(1)113,
187(1)203,
188(1)117,
190(2)317,
193(1)53,
193(1)215,
199(1)145,
201(1)189,
206(1)181,
216(1)159,
218(1)143
- preorder,
138(2)391,
146(1)341,
170(1)349,
184(1)61
- Rutten, J. J. M. M.,
151(1)1,
170(1)349,
221(1)271
- Scott,
155(1)221,
155(1)267,
159(2)319,
177(1)155,
177(1)217,
184(1)61,
193(1)53,
193(1)181
- subset,
138(1)35,
138(1)67,
138(1)141,
151(1)29,
154(2)379,
163(1)1,
163(1)55,
166(1)49,
168(1)155,
169(2)123,
179(1)427,
180(1)363,
187(1)167,
192(2)259,
193(1)113,
197(1)79,
207(1)171,
219(1)19,
219(1)65,
224(1)135
- topology,
138(1)211,
145(1)229,
147(1)137,
151(1)257,
151(1)z,
156(1)159,
159(2)319,
162(2)351,
166(1)263,
169(2)185,
174(1)203,
175(1)3,
177(1)155,
179(1)319,
193(1)53,
194(1)123,
194(1)246,
215(1)359
- upper,
140(2)265,
145(1)45,
145(1)271,
148(1)141,
151(1)163,
156(1)315,
157(2)161,
158(1)143,
163(1)177,
165(2)483,
168(1)105,
175(2)283,
181(1)119,
184(1)61,
194(1)163
- via,
143(2)343,
160(1)145,
160(1)185,
171(1)61,
185(2)347,
194(1)240,
203(2)225,
212(1)77,
219(1)169
- view,
138(2)391,
159(2)143,
170(1)349,
183(2)229,
184(1)1,
190(2)211,
192(2)167,
212(1)233,
219(1)267,
229(1)3
- Yoneda,
197(1)247-1,
228(1)253