Entry Smyth:1995:SMC from tcs1995.bib
Last update: Sun Oct 15 02:56:11 MDT 2017
Top |
Symbols |
Numbers |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Smyth:1995:SMC,
author = "M. B. Smyth",
title = "Semi-metrics, closure spaces and digital topology",
journal = j-THEOR-COMP-SCI,
volume = "151",
number = "1",
pages = "257--276",
day = "13",
month = nov,
year = "1995",
CODEN = "TCSCDI",
ISSN = "0304-3975 (print), 1879-2294 (electronic)",
ISSN-L = "0304-3975",
bibdate = "Mon Jul 19 22:19:29 MDT 1999",
bibsource = "http://www.elsevier.com/cgi-bin/cas/tree/store/tcs/cas_free/browse/browse.cgi?year=1995&volume=151&issue=1;
http://www.math.utah.edu/pub/tex/bib/tcs1995.bib",
URL = "http://www.elsevier.com/cgi-bin/cas/tree/store/tcs/cas_sub/browse/browse.cgi?year=1995&volume=151&issue=1&aid=1994",
acknowledgement = ack-nhfb,
classification = "C1160 (Combinatorial mathematics); C4210 (Formal
logic); C4260 (Computational geometry)",
conflocation = "Chartres, France; 18-20 Nov. 1993",
conftitle = "Workshop on Topology and Completion in Semantics",
corpsource = "Dept. of Comput., Imperial Coll. of Sci., Technol. and
Med., London, UK",
fjournal = "Theoretical Computer Science",
journal-URL = "http://www.sciencedirect.com/science/journal/03043975/",
keywords = "Cech closure spaces; closure spaces; computational
geometry; digital spaces; digital topology; domain
equations; formal logic; generalized topological
structures; graph theory; inverse limits; modal
semantics; real unit interval; semi metrics;
semi-metrics; tolerance geometry; topological graphs",
pubcountry = "Netherlands",
treatment = "T Theoretical or Mathematical",
}
Related entries
- C4260,
137(1)145,
137(2)177,
140(2)205,
140(2)249,
140(2)265,
140(2)291,
140(2)301,
141(1)337,
143(1)113,
143(1)175,
143(2)189,
143(2)309,
143(2)343,
145(1)27,
145(1)241,
145(1)329,
145(1)381,
147(1)211,
148(1)57,
148(1)93,
155(2)321,
156(1)1,
156(1)159,
157(1)35,
157(1)53,
157(1)z,
157(2)185,
159(1)103,
159(1)105,
159(1)129,
159(1)137,
162(2)351,
163(1)303,
164(1)59,
164(1)165,
168(1)121,
169(2)147,
172(1)121,
172(1)175,
172(1)209,
172(1)233,
172(1)265,
174(1)193,
175(2)239,
180(1)363,
181(1)3,
181(1)57,
181(1)91,
181(1)107,
182(1)233,
186(1)1,
188(1)59,
188(1)129,
191(1)193,
194(1)z,
197(1)203
- closure,
127(2)287,
137(2)237,
139(1)27,
142(2)179,
144(1)59,
145(1)291,
148(2)261,
151(1)z,
156(1)145,
160(1)217,
163(1)259,
165(2)391,
166(1)49,
167(1)47,
169(2)185,
178(1)205,
180(1)325,
183(1)3,
183(1)21,
185(2)393,
191(1)79,
193(1)197,
195(2)183,
226(1)185
- digital,
138(1)141,
144(1)3,
144(1)101,
144(1)161,
144(1)251,
147(1)211,
151(1)277,
151(1)z,
154(2)225,
156(1)159,
159(1)29,
162(1)133,
162(1)151,
173(1)151,
176(1)89,
178(1)225,
191(1)245,
196(1)201,
197(1)57,
226(1)117
- domain,
151(1)163,
151(1)195,
151(1)z,
152(1)67,
155(1)221,
155(1)267,
159(2)319,
159(2)355,
160(1)1,
162(2)225,
165(1)57,
166(1)49,
166(1)203,
170(1)349,
171(1)247,
172(1)1,
172(1)43,
173(1)113,
173(1)209,
175(1)3,
176(1)89,
177(1)111,
177(1)155,
179(1)203,
179(1)217,
179(1)319,
179(1)421,
187(1)203,
189(1)179,
193(1)1,
193(1)53,
193(1)113,
193(1)181,
196(1)395,
197(1)246-2,
216(1)159,
219(1)19,
219(1)169,
222(1)153
- equation,
138(1)67,
143(1)51,
144(1)59,
144(1)161,
145(1)71,
147(1)267,
153(1)49,
154(1)3,
155(1)221,
155(1)267,
157(1)3,
157(1)79,
157(1)115,
157(1)z,
162(2)225,
168(1)105,
170(1)349,
173(1)183,
176(1)205,
176(1)347,
177(1)217,
177(2)407,
179(1)217,
180(1)287,
186(1)83,
187(1)3,
187(1)7,
187(1)27,
187(1)49,
187(1)81,
187(1)87,
187(1)179,
187(1)263,
187(1)z,
191(1)145,
192(1)3,
193(1)113,
196(1)395,
197(1)247,
216(1)395,
224(1)215,
225(1)149
- generalized,
137(1)129,
145(1)159,
154(2)165,
155(1)141,
158(1)53,
160(1)305,
161(1)301,
170(1)349,
174(1)203,
174(1)269,
177(1)183,
188(1)221,
193(1)1,
194(1)87,
197(1)248-1,
199(1)167,
200(1)313,
201(1)171,
215(1)191,
218(1)123
- interval,
143(1)73,
145(1)291,
148(1)93,
162(1)151,
162(2)225,
166(1)1,
170(1)1,
173(1)3,
173(1)253,
174(1)171,
175(2)309,
175(2)349,
205(1)115,
219(1)421
- inverse,
184(1)61,
204(1)35,
215(1)137
- limit,
144(1)67,
144(1)221,
153(1)3,
161(1)235,
164(1)185,
184(1)61,
218(1)3
- metric,
138(1)169,
138(2)273,
146(1)311,
150(1)57,
151(1)163,
151(1)195,
162(1)45,
170(1)145,
170(1)349,
177(1)111,
179(1)217,
183(2)187,
184(1)61,
193(1)1,
193(1)53,
193(1)97,
194(1)163,
202(1)55,
202(1)223,
219(1)439,
219(1)467
- modal,
140(1)53,
147(1)149,
151(1)3,
151(1)z,
175(1)29,
195(2)133,
202(1)193,
221(1)251,
224(1)135
- real,
138(1)3,
141(1)331,
145(1)241,
151(1)277,
154(1)41,
154(1)67,
156(1)281,
162(1)23,
162(1)79,
162(1)151,
163(1)193,
176(1)89,
179(1)319,
180(1)229,
183(2)187,
193(1)149,
210(1)73,
210(1)99,
210(1)121,
219(1)185,
219(1)451,
221(1)295
- tolerance,
165(2)483,
182(1)159,
188(1)79,
197(1)171
- topological,
146(1)331,
147(1)137,
147(1)211,
151(1)29,
151(1)79,
151(1)277,
163(1)161,
166(1)263,
167(1)73,
174(1)203,
175(1)3,
177(1)139,
179(1)319,
181(2)307,
191(1)79,
219(1)347,
219(1)379,
221(1)157
- topology,
138(1)211,
145(1)229,
147(1)137,
151(1)z,
156(1)159,
159(2)319,
162(2)351,
166(1)263,
169(2)185,
174(1)203,
175(1)3,
177(1)155,
179(1)319,
193(1)1,
193(1)53,
194(1)123,
194(1)246,
215(1)359
- unit,
155(2)291,
159(1)105,
174(1)23,
175(2)349,
178(1)119,
217(1)3,
219(1)421