Entry Oussous:1991:CMM from tcs1990.bib
Last update: Wed Sep 26 02:11:46 MDT 2018
Top |
Symbols |
Numbers |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Oussous:1991:CMM,
author = "N. E. Oussous",
title = "Computation, on {Macsyma}, of the Minimal Differential
Representation of Noncommutative Polynomials",
journal = j-THEOR-COMP-SCI,
volume = "79",
number = "1",
pages = "195--207",
day = "21",
month = feb,
year = "1991",
CODEN = "TCSCDI",
ISSN = "0304-3975 (print), 1879-2294 (electronic)",
ISSN-L = "0304-3975",
bibdate = "Sat Nov 22 13:24:22 MST 1997",
bibsource = "Compendex database;
http://www.math.utah.edu/pub/tex/bib/tcs1990.bib;
UnCover library database",
acknowledgement = ack-nhfb,
affiliation = "C.N.R.S.",
affiliationaddress = "Villeneuve d'Ascq, France",
classification = "723; 921; C4130 (Interpolation and function
approximation); C6130 (Data handling techniques); C7310
(Mathematics)",
corpsource = "Lab. d'Inf. Fondamentale de Lille, Lille I Univ.,
Villeneuve d'Ascq, France",
fjournal = "Theoretical Computer Science",
journal-URL = "http://www.sciencedirect.com/science/journal/03043975/",
journalabr = "Theor Comput Sci Part B Logic Semantics Theory
Program",
keywords = "Algebraic computation language; algebraic computation
language; Computer Programming --- Algorithms; finite
alphabet; Finite alphabet; finite generating power
series; Finite generating power series; Local minimal
realization; local minimal realization; Macsyma;
Macsyma Symbolic Language; Manipulation of words;
manipulation of words; Mathematical Techniques;
mathematics computing; minimal differential
representation; Minimal differential representation;
Minimal Differential Representation; noncommutative
polynomials; Noncommutative Polynomials; Noncommutative
polynomials; Noncommutative power series;
noncommutative power series; polynomials; Polynomials;
Power Series; series (mathematics); symbol
manipulation",
pubcountry = "Netherlands",
thesaurus = "Mathematics computing; Polynomials; Series
[mathematics]; Symbol manipulation",
treatment = "P Practical; T Theoretical or Mathematical",
}
Related entries
- alphabet,
71(3)381,
73(1)81,
73(3)279,
73(3)335,
76(2)261,
81(1)147,
81(2)289,
83(2)287,
88(1)117,
92(1)33,
92(1)77,
92(1)87,
92(1)145,
95(2)187,
108(2)311,
108(2)345,
108(2)365,
113(1)35,
115(2)243,
115(2)359,
118(1)49,
123(1)61,
127(1)53,
131(2)311,
132(1)71,
132(1)415,
134(1)87,
134(1)209,
134(1)225,
134(2)329
- approximation,
70(1)35,
74(1)19,
77(3)331,
79(1)151,
79(1)227,
81(1)77,
84(2)151,
88(2)313,
92(2)269,
93(1)91,
94(1)63,
94(2)175,
100(1)243,
102(2)283,
103(1)107,
106(2)265,
107(1)145,
117(1)113,
123(1)95,
125(2)295,
125(2)345,
125(2)355,
127(2)269,
130(1)5,
133(1)65,
133(1)105,
133(1)141,
133(1)165,
134(1)51,
134(2)473
- C4130,
74(1)19,
79(1)151,
79(1)227,
81(1)77,
84(2)151,
88(2)313,
92(2)269,
93(1)91,
94(2)175,
100(1)243,
102(2)283,
106(2)265,
117(1)113,
123(1)95,
125(2)295,
125(2)345,
125(2)355,
127(2)269,
130(1)5,
133(1)65,
133(1)105,
133(1)141,
133(1)165
- C6130,
74(2)183,
74(3)341,
76(2)331,
79(1)37,
79(1)111,
79(1)163,
79(1)241,
80(2)319,
82(1)157,
83(2)275,
84(2)265,
85(1)97,
88(1)83,
92(1)19,
92(1)33,
103(1)137,
104(1)89,
108(2)371,
117(1)303,
118(1)81,
119(2)355,
123(1)117,
124(1)71,
125(2)259,
127(1)181,
129(2)293,
130(1)101,
131(1)1,
134(2)559
- C7310,
79(1)209,
79(1)241,
110(1)169,
117(1)131,
123(1)61,
131(1)1
- computer,
70(1)3,
71(1)47,
73(1)1,
73(1)101,
74(3)273,
75(1)z,
77(1)73,
77(1)161,
77(1)195,
77(3)321,
79(1)37,
79(1)209,
84(1)23,
84(1)77,
84(1)127,
86(2)205,
90(1)1,
90(1)253,
91(1)57,
92(1)49,
92(1)77,
94(1)125,
96(1)175,
100(1)223,
102(1)1,
108(2)291,
116(2)227,
116(2)291,
116(2)373,
117(1)z,
119(1)z,
120(2)215,
122(1)1,
123(1)117,
123(1)z,
125(1)45,
125(1)111,
125(1)131,
125(1)149,
125(2)373,
127(2)395,
128(1)3,
128(1)31,
130(1)17,
134(1)51,
136(2)387
- computing,
73(1)1,
76(2)309,
79(1)209,
79(1)241,
79(2)323,
81(2)169,
81(2)201,
86(2)143,
86(2)325,
92(1)3,
92(1)87,
92(2)291,
95(2)263,
96(1)175,
98(2)249,
100(1)253,
109(1)3,
109(1)z,
115(2)191,
119(1)215,
125(2)373,
128(1)99,
128(1)127,
128(1)159,
128(1)179,
128(1)241,
129(2)279,
133(1)35
- differential,
72(2)119,
72(2)z,
79(1)179,
98(1)137,
117(1)113,
133(1)23
- generating,
71(3)381,
73(3)279,
79(1)37,
79(1)151,
79(1)163,
79(1)257,
81(2)269,
92(2)249,
94(2)261,
98(1)65,
113(2)349,
113(2)371,
117(1)203,
117(1)273,
119(2)345,
131(2)375,
132(1)347,
132(1)415,
134(1)3
- handling,
74(2)183,
74(3)341,
76(2)331,
79(1)37,
79(1)111,
79(1)163,
79(1)241,
79(2)323,
80(2)319,
82(1)157,
83(2)275,
84(2)265,
85(1)97,
88(1)83,
92(1)19,
92(1)33,
94(1)1,
103(1)137,
104(1)89,
105(2)217,
108(2)185,
108(2)371,
117(1)303,
118(1)81,
119(2)355,
122(1)263,
123(1)117,
124(1)71,
125(2)259,
127(1)181,
129(2)293,
130(1)101,
131(1)1,
134(2)559,
135(2)221
- interpolation,
74(1)19,
79(1)151,
79(1)227,
79(2)295,
81(1)77,
84(2)151,
88(2)313,
92(2)269,
93(1)91,
94(2)175,
100(1)243,
102(2)283,
106(2)265,
113(2)211,
117(1)113,
123(1)95,
125(2)295,
125(2)345,
125(2)355,
127(2)269,
130(1)5,
133(1)65,
133(1)105,
133(1)141,
133(1)165
- local,
71(1)3,
72(1)55,
80(1)77,
81(2)317,
89(1)161,
94(2)175,
95(1)43,
96(1)157,
96(1)z,
100(1)223,
103(2)205,
111(1)103,
112(2)355,
114(2)201,
119(1)63,
126(2)259,
129(2)369,
130(1)73,
130(1)125,
134(1)87,
134(1)189
- Macsyma,
79(1)209
- manipulation,
71(2)209,
79(1)37,
79(1)111,
79(1)163,
79(1)241,
85(1)97,
92(1)19,
92(2)319,
94(2)223,
98(1)115,
104(1)89,
108(2)311,
109(1)7,
110(1)169,
113(1)3,
117(1)131,
123(1)61,
123(1)117,
124(1)71,
131(1)1
- mathematical,
74(2)163,
76(1)53,
76(2)331,
79(1)209,
81(1)65,
84(2)281,
85(2)333,
94(2)311,
95(1)159,
96(2)389,
101(2)239,
103(2)311,
103(2)335,
104(1)89,
106(2)283,
110(1)197,
110(2)249,
111(1)z,
116(1)3,
116(2)227,
123(1)55,
123(1)117,
134(2)403,
135(1)z
- minimal,
74(3)329,
76(2)309,
77(3)237,
79(1)151,
83(2)287,
85(1)97,
86(2)143,
93(2)185,
95(2)245,
96(1)35,
102(2)307,
102(2)329,
119(2)267,
124(2)329,
129(1)1,
129(2)293,
132(1)229,
134(2)493
- noncommutative,
79(1)111,
79(1)151,
79(1)179,
79(1)257,
98(1)53,
98(1)99,
117(1)255,
117(1)z,
127(2)269,
134(1)131
- power,
70(1)159,
71(1)47,
73(2)177,
74(2)163,
79(1)3,
79(1)25,
79(1)163,
79(1)179,
79(1)209,
79(1)257,
79(1)263,
80(1)1,
80(1)35,
80(2)125,
80(2)337,
81(2)269,
81(2)305,
83(2)261,
83(2)301,
85(1)171,
88(2)231,
92(2)269,
93(1)1,
93(1)43,
93(2)265,
98(1)27,
98(1)53,
98(1)99,
98(1)z,
98(2)163,
98(2)249,
99(2)291,
99(2)327,
101(1)35,
101(1)143,
108(1)3,
108(2)385,
109(1)7,
110(1)131,
111(1)59,
111(1)z,
112(2)291,
113(1)75,
114(1)119,
114(2)201,
115(2)191,
115(2)359,
116(1)33,
116(1)95,
117(1)39,
117(1)113,
117(1)131,
117(1)169,
117(1)199,
117(1)289,
117(1)z,
127(1)171,
134(2)545,
136(1)21
- realization,
87(2)229,
100(2)267
- representation,
70(3)305,
74(2)163,
74(2)183,
75(3)289,
77(1)97,
77(3)237,
78(1)159,
80(1)35,
81(2)305,
83(2)219,
84(2)293,
85(2)253,
87(1)43,
88(1)171,
89(1)137,
90(2)433,
94(2)223,
97(1)157,
99(2)213,
108(2)331,
112(2)291,
117(1)131,
119(2)331,
120(1)101,
123(1)61,
123(2)291,
123(2)377,
125(2)167,
126(1)77,
129(2)207,
133(2)307,
134(2)403,
135(2)267
- symbol,
72(2)203,
79(1)37,
79(1)111,
79(1)163,
79(1)241,
85(1)97,
92(1)19,
94(2)223,
104(1)3,
104(1)89,
107(2)277,
110(1)169,
113(1)3,
117(1)131,
118(2)167,
119(1)3,
123(1)61,
123(1)117,
124(1)71,
124(2)221,
124(2)297,
131(1)1,
134(1)63
- symbolic,
79(1)163,
79(1)209,
94(2)223,
94(2)335,
94(2)367,
104(1)89,
110(1)169,
113(1)3,
117(1)131,
123(1)61,
134(1)131
- word,
71(3)281,
71(3)381,
72(1)27,
72(1)39,
72(1)55,
73(3)335,
74(1)3,
79(1)241,
81(1)147,
81(2)305,
82(1)71,
83(2)301,
85(1)33,
86(2)277,
88(1)83,
88(2)365,
92(1)19,
93(2)227,
94(2)199,
94(2)367,
96(2)325,
96(2)405,
99(2)327,
100(1)67,
102(2)253,
106(2)327,
106(2)373,
106(2)395,
108(1)3,
108(1)17,
108(1)45,
108(1)103,
108(1)z,
108(2)251,
108(2)311,
108(2)357,
110(1)1,
112(2)187,
112(2)311,
115(1)43,
115(2)191,
115(2)243,
117(1)217,
119(2)267,
120(2)303,
123(1)55,
123(2)273,
126(2)237,
127(1)53,
129(2)263,
129(2)369,
131(2)271,
132(1)129,
132(1)415,
134(1)209,
134(1)225,
134(1)z,
134(2)529,
136(2)361