Entry Neraud:1993:DWF from tcs1990.bib
Last update: Wed Sep 26 02:11:46 MDT 2018
Top |
Symbols |
Numbers |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Neraud:1993:DWF,
author = "Jean N{\'e}raud",
title = "Deciding whether a finite set of words has rank at
most two",
journal = j-THEOR-COMP-SCI,
volume = "112",
number = "2",
pages = "311--337",
day = "10",
month = may,
year = "1993",
CODEN = "TCSCDI",
ISSN = "0304-3975 (print), 1879-2294 (electronic)",
ISSN-L = "0304-3975",
bibdate = "Mon Jul 19 22:17:11 MDT 1999",
bibsource = "http://www.elsevier.com/cgi-bin/cas/tree/store/tcs/cas_free/browse/browse.cgi?year=1993&volume=112&issue=2;
http://www.math.utah.edu/pub/tex/bib/tcs1990.bib",
URL = "http://www.elsevier.com/cgi-bin/cas/tree/store/tcs/cas_sub/browse/browse.cgi?year=1993&volume=112&issue=2&aid=1178",
acknowledgement = ack-nhfb,
classification = "C1110 (Algebra); C1160 (Combinatorial mathematics);
C4210 (Formal logic)",
corpsource = "Inst. Blaise Pascal, Rouen Univ., Mont-Saint-Aignan,
France",
fjournal = "Theoretical Computer Science",
journal-URL = "http://www.sciencedirect.com/science/journal/03043975/",
keywords = "decidability; finite set; free monoid; group theory;
rank; set theory; words",
pubcountry = "Netherlands",
treatment = "T Theoretical or Mathematical",
}
Related entries
- C1110,
71(3)347,
72(2)119,
74(3)273,
84(2)225,
84(2)251,
87(1)1,
89(2)207,
93(2)327,
98(1)79,
98(1)99,
98(1)115,
98(1)137,
98(1)z,
108(1)3,
108(1)17,
112(2)187,
112(2)371,
120(1)101,
123(2)239,
123(2)259,
129(2)337,
134(1)3,
134(1)131,
134(1)189,
134(1)209
- decidability,
71(1)29,
71(2)265,
71(3)281,
72(1)39,
73(3)295,
74(1)3,
74(1)71,
74(3)341,
78(2)347,
79(1)37,
79(1)263,
80(1)77,
80(2)227,
80(2)303,
81(1)137,
81(2)269,
81(2)289,
82(1)19,
82(1)131,
85(1)33,
85(2)253,
87(1)25,
87(2)287,
88(2)269,
88(2)325,
89(1)33,
91(1)71,
91(1)101,
94(1)1,
94(2)367,
95(1)115,
95(2)187,
96(2)325,
98(1)5,
98(2)199,
99(2)291,
101(1)143,
103(1)39,
103(1)143,
103(2)387,
106(1)87,
106(1)135,
106(2)337,
108(1)103,
108(2)237,
109(1)83,
110(1)145,
110(2)419,
113(1)93,
113(1)119,
114(1)93,
116(2)339,
117(1)39,
118(2)167,
118(2)193,
120(2)229,
121(1)71,
121(1)89,
123(2)315,
126(1)31,
126(1)113,
127(1)1,
127(1)69,
127(1)149,
127(2)229,
129(1)167,
129(2)419,
130(2)239,
131(2)243,
131(2)271,
131(2)431,
131(2)441,
132(1)37,
132(1)85,
132(1)129,
132(1)395,
134(1)107,
134(1)175,
134(2)287,
134(2)311,
134(2)329,
134(2)365,
135(2)345
- deciding,
71(2)265,
103(2)387,
123(2)183,
131(2)441
- free,
70(2)179,
71(2)265,
72(1)65,
73(1)81,
73(3)335,
74(1)3,
74(2)121,
78(2)319,
79(1)227,
79(1)241,
86(2)233,
92(1)77,
92(2)249,
92(2)269,
94(2)199,
94(2)367,
97(1)67,
97(2)301,
98(1)5,
98(1)79,
98(1)115,
99(2)231,
100(1)67,
100(2)267,
101(2)161,
102(1)185,
103(1)25,
103(1)51,
108(1)z,
115(2)359,
116(2)421,
117(1)91,
117(1)217,
119(2)363,
121(1)309,
123(2)427,
125(2)167,
126(2)237,
134(1)3,
134(1)107,
134(1)209,
134(2)537
- group,
70(2)193,
72(1)65,
80(1)117,
80(2)227,
84(1)23,
84(2)225,
84(2)251,
86(2)233,
87(2)229,
87(2)315,
88(1)83,
88(1)151,
89(2)207,
91(1)119,
93(2)327,
94(2)199,
95(2)263,
98(1)79,
98(1)115,
98(2)321,
99(2)231,
108(1)3,
108(1)119,
108(1)151,
108(1)z,
109(1)3,
112(2)187,
115(1)3,
117(1)243,
120(1)101,
123(2)239,
123(2)259,
125(1)149,
134(1)3,
134(1)189,
134(1)209,
134(1)z
- has,
120(2)197
- monoid,
73(1)81,
73(3)335,
74(1)3,
74(2)121,
76(2)251,
78(2)319,
78(2)347,
81(1)17,
84(2)225,
86(2)233,
91(2)285,
92(1)77,
92(2)249,
92(2)269,
97(2)301,
98(1)5,
98(2)321,
99(2)231,
100(1)67,
104(2)161,
107(1)31,
108(1)103,
108(1)z,
117(1)91,
117(1)z,
120(1)101,
123(2)239,
123(2)273,
125(2)167,
125(2)361,
131(2)271,
134(1)3,
134(1)13,
134(1)87,
134(1)107,
134(1)189,
134(1)209,
134(2)537
- most,
76(2)273,
88(2)351
- rank,
99(2)231,
102(2)307,
129(2)369
- two,
73(3)265,
74(3)329,
76(2)273,
79(1)241,
86(2)143,
92(1)77,
95(1)169,
95(2)323,
98(2)339,
100(1)105,
104(2)161,
112(2)391,
120(2)197,
123(2)239,
127(1)187,
131(2)361,
131(2)449,
134(2)415,
136(2)507
- word,
71(3)281,
71(3)381,
72(1)27,
72(1)39,
72(1)55,
73(3)335,
74(1)3,
79(1)195,
79(1)241,
81(1)147,
81(2)305,
82(1)71,
83(2)301,
85(1)33,
86(2)277,
88(1)83,
88(2)365,
92(1)19,
93(2)227,
94(2)199,
94(2)367,
96(2)325,
96(2)405,
99(2)327,
100(1)67,
102(2)253,
106(2)327,
106(2)373,
106(2)395,
108(1)3,
108(1)17,
108(1)45,
108(1)103,
108(1)z,
108(2)251,
108(2)311,
108(2)357,
110(1)1,
112(2)187,
115(1)43,
115(2)191,
115(2)243,
117(1)217,
119(2)267,
120(2)303,
123(1)55,
123(2)273,
126(2)237,
127(1)53,
129(2)263,
129(2)369,
131(2)271,
132(1)129,
132(1)415,
134(1)209,
134(1)225,
134(1)z,
134(2)529,
136(2)361