Entry Rupert:1991:WKS from tcs1990.bib
Last update: Wed Sep 26 02:11:46 MDT 2018
              
 
Top |
Symbols |
Numbers |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Rupert:1991:WKS,
  author =       "C. P. Rupert",
  title =        "Which {Kleene} semigroups are finite?",
  journal =      j-THEOR-COMP-SCI,
  volume =       "84",
  number =       "2",
  pages =        "251--264",
  day =          "29",
  month =        jul,
  year =         "1991",
  CODEN =        "TCSCDI",
  ISSN =         "0304-3975 (print), 1879-2294 (electronic)",
  ISSN-L =       "0304-3975",
  bibdate =      "Sat Nov 22 13:24:22 MST 1997",
  bibsource =    "http://www.math.utah.edu/pub/tex/bib/tcs1990.bib",
  acknowledgement = ack-nhfb,
  classification = "C1110 (Algebra); C4210 (Formal logic)",
  corpsource =   "Dept. of Math. and Comput. Sci., North Carolina
                 Central Univ., Durham, NC, USA",
  fjournal =     "Theoretical Computer Science",
  journal-URL =  "http://www.sciencedirect.com/science/journal/03043975/",
  keywords =     "formal languages; group theory; Kleene semigroups;
                 rational idempotents; Simon theorem",
  pubcountry =   "Netherlands",
  treatment =    "T Theoretical or Mathematical",
}
Related entries
- C1110,
71(3)347,
72(2)119,
74(3)273,
84(2)225,
87(1)1,
89(2)207,
93(2)327,
98(1)79,
98(1)99,
98(1)115,
98(1)137,
98(1)z,
108(1)3,
108(1)17,
112(2)187,
112(2)311,
112(2)371,
120(1)101,
123(2)239,
123(2)259,
129(2)337,
134(1)3,
134(1)131,
134(1)189,
134(1)209
- group,
70(2)193,
72(1)65,
80(1)117,
80(2)227,
84(1)23,
84(2)225,
86(2)233,
87(2)229,
87(2)315,
88(1)83,
88(1)151,
89(2)207,
91(1)119,
93(2)327,
94(2)199,
95(2)263,
98(1)79,
98(1)115,
98(2)321,
99(2)231,
108(1)3,
108(1)119,
108(1)151,
108(1)z,
109(1)3,
112(2)187,
112(2)311,
115(1)3,
117(1)243,
120(1)101,
123(2)239,
123(2)259,
125(1)149,
134(1)3,
134(1)189,
134(1)209,
134(1)z
- idempotent,
108(1)151,
123(2)273,
124(1)71
- Kleene,
76(2)273,
79(1)137,
83(2)249,
88(2)287,
108(1)17,
125(2)167,
127(2)287,
134(1)79
- rational,
70(2)261,
74(3)329,
76(2)243,
76(2)251,
79(1)151,
85(1)33,
86(2)277,
88(2)313,
89(2)207,
93(2)169,
93(2)327,
94(2)175,
95(2)279,
98(1)5,
98(1)27,
98(1)41,
98(1)79,
98(1)z,
99(2)291,
103(1)39,
108(1)3,
108(1)45,
108(2)385,
115(2)243,
127(1)1,
134(1)27,
134(2)403
- semigroup,
72(1)65,
74(2)163,
87(2)229,
87(2)315,
89(2)207,
92(2)269,
108(1)3,
108(1)151,
108(1)z,
134(1)189,
134(1)z
- which,
74(1)3,
79(1)241,
87(1)25,
92(2)269,
120(1)83,
124(1)149