Last update: Sun Oct 15 02:29:44 MDT 2017
Top |
Symbols |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Torres:2000:FAD,
author = "J. C. Torres and F. A. Conde",
title = "A Fast Algorithm to Decide the Inclusion of a Point in
the Convex Hull of a Two-Dimensional Point Set",
journal = j-J-GRAPHICS-TOOLS,
volume = "5",
number = "4",
pages = "25--32",
year = "2000",
CODEN = "JGTOFD",
ISSN = "1086-7651",
ISSN-L = "1086-7651",
bibdate = "Fri Jul 20 12:38:17 2001",
bibsource = "http://www.acm.org/jgt/issues.html;
http://www.math.utah.edu/pub/tex/bib/jgraphtools.bib",
URL = "http://www.acm.org/jgt/papers/AlonsoHolzschuch00/",
abstract = "This paper presents a new fast algorithm to compute
the two-dimensional inclusion test of a point in the
convex hull of a set of points, without computing the
convex hull. The algorithm is based on the
classification of the points in octants of the plane.
The classification step for each point requires only
simple test operations, and makes the algorithm run in
at worst, O(n). For point sets larger than 11 points,
the proposed algorithm is faster than other known
approaches. The paper includes a practical evaluation
of the algorithm, comparing it with several previously
known approaches.",
acknowledgement = ack-nhfb,
journal-URL = "http://www.tandfonline.com/loi/ujgt20",
}
Related entries
- approach,
1(3)7,
1(3)29,
3(2)15,
3(4)33,
4(1)11,
4(3)35,
4(4)5,
4(4)23,
5(1)27,
6(1)29,
6(3)45,
7(1)23,
7(4)43,
7(4)69,
7(4)83,
8(1)3,
8(3)41,
9(2)1,
9(3)21,
10(4)33,
12(3)1,
16(3)160
- based,
1(2)31,
1(3)13,
1(4)21,
2(1)1,
2(2)1,
2(3)1,
2(3)29,
2(4)15,
2(4)25,
3(2)15,
3(4)1,
4(1)11,
4(1)25,
4(2)27,
4(3)1,
4(3)23,
4(4)5,
5(3)11,
5(4)1,
5(4)33,
6(2)27,
6(2)43,
7(1)23,
7(1)33,
7(1)45,
7(2)17,
7(2)27,
7(3)43,
7(4)27,
7(4)83,
8(2)41,
8(4)1,
9(1)23,
9(2)21,
17(3)59
- classification,
10(3)27
- comparing,
2(4)15,
5(1)9
- compute,
1(1)3,
2(3)45,
3(3)29,
4(2)37,
4(3)1,
4(3)11,
5(1)1,
5(4)1,
6(4)1,
6(4)29,
7(2)9,
7(4)9,
8(1)3,
9(1)35
- computing,
1(2)31,
1(3)7,
2(2)25,
3(1)43,
3(3)29,
4(2)1,
4(2)7,
5(4)1,
7(3)13,
7(4)69,
8(1)3,
8(1)16,
8(3)23,
8(4)1,
9(2)11,
10(3)9,
11(2)51,
15(3)161
- convex,
1(2)1,
4(2)7,
6(2)27,
6(3)29,
7(1)13,
7(4)43,
12(2)1,
13(2)55
- decide,
4(1)1
- Dimensional, Two-,
5(4)13,
7(3)43,
10(1)17,
10(2)27,
15(3)152
- dimensional, two-,
2(4)45,
4(1)39,
4(2)37,
4(4)23,
5(4)13,
7(2)9,
7(3)43,
8(2)31,
9(1)35
- each,
1(2)5,
1(4)1,
1(4)21,
2(1)29,
2(2)31,
3(1)43,
3(2)21,
3(4)13,
4(1)25,
4(1)39,
4(3)11,
4(4)23,
6(2)17,
7(1)33,
7(2)1,
7(4)69,
8(2)17
- evaluation,
2(4)15,
10(2)13,
12(3)7,
15(3)183
- fast,
1(2)25,
1(2)31,
1(3)1,
2(1)21,
2(2)25,
2(3)29,
2(4)15,
3(4)1,
3(4)33,
4(2)7,
4(2)37,
4(4)5,
5(2)33,
6(1)29,
6(2)1,
6(2)27,
6(2)43,
6(4)1,
6(4)13,
6(4)29,
7(1)23,
7(2)9,
7(2)17,
7(3)27,
7(3)43,
7(4)69,
7(4)91,
8(1)16,
8(1)25,
8(2)17,
8(4)1,
8(4)37,
9(1)23,
9(1)35,
9(2)1,
9(2)11,
9(3)21,
10(2)41,
10(3)13,
11(2)37,
11(4)39,
12(2)59,
12(4)35,
12(4)47,
13(3)53,
14(2)1,
15(3)161,
17(1)17
- faster,
1(1)3,
1(3)7,
2(4)1,
4(2)37,
4(3)1,
4(3)23,
4(4)1,
5(1)1,
5(1)9,
5(2)33,
5(3)11,
6(1)29,
6(4)1,
7(1)23,
8(1)16,
9(1)35,
12(1)3,
12(3)17,
17(3)67
- include,
4(4)37,
7(4)83
- known,
2(2)9,
4(2)27,
4(4)1,
7(2)27,
9(1)23,
15(3)183
- larger,
4(2)1,
8(1)33,
8(3)1
- make,
1(3)29,
1(4)21,
3(4)33,
4(3)1,
4(4)37,
5(3)35,
6(2)1,
7(2)1,
7(4)3
- new,
1(1)3,
2(4)15,
3(4)1,
3(4)33,
4(1)1,
4(1)39,
4(2)1,
4(3)23,
4(4)23,
5(1)1,
5(2)15,
6(1)7,
6(2)1,
6(3)37,
7(1)13,
7(2)41,
7(4)69,
8(1)3,
8(3)1,
8(4)25,
9(1)23,
9(2)1,
9(3)21
- octant,
5(1)9
- only,
1(3)1,
3(3)1,
3(3)29,
4(2)27,
5(1)9,
5(3)11,
6(3)17,
6(4)29,
7(4)69,
8(2)41,
8(3)23,
8(3)41,
8(4)1,
8(4)21,
8(4)25,
9(1)1,
9(3)21
- operation,
1(2)31,
2(2)31,
3(3)29,
3(4)33,
4(4)23,
5(4)13,
7(3)1,
7(4)83,
7(4)91,
8(2)17,
8(3)23,
9(1)35
- other,
1(1)3,
1(1)21,
1(2)25,
1(4)21,
2(2)1,
3(3)29,
4(1)1,
4(2)1,
4(4)23,
5(1)9,
5(3)1,
6(1)1,
6(1)7,
6(4)29,
7(1)1,
7(2)1,
7(2)27,
7(3)1,
8(1)16,
8(2)41,
9(3)41
- plane,
2(1)21,
2(2)9,
2(3)37,
5(1)9,
5(2)33,
6(1)19,
6(2)27,
7(3)19,
8(4)25,
9(1)35,
14(2)25
- point,
1(2)31,
1(4)21,
2(1)29,
2(2)9,
2(2)31,
3(4)1,
4(1)25,
4(4)37,
5(1)1,
5(2)15,
5(3)1,
5(4)1,
5(4)9,
6(2)43,
6(4)29,
7(1)33,
7(2)41,
7(3)1,
7(3)27,
7(3)43,
7(4)43,
7(4)69,
8(1)3,
8(3)1,
8(4)25,
9(1)1,
9(2)11,
10(2)1,
10(3)9,
10(3)27,
15(3)152
- practical,
1(2)5,
2(4)25,
3(1)1,
3(2)21,
3(3)29,
3(4)33,
5(1)27,
6(2)1,
7(4)9,
8(2)41,
8(4)25,
9(3)1,
15(3)183,
16(3)160
- present,
1(2)31,
1(3)1,
1(3)29,
1(4)1,
1(4)21,
2(1)21,
2(2)1,
2(2)25,
2(3)15,
2(3)45,
2(4)1,
3(1)1,
3(1)15,
3(2)15,
3(3)29,
3(4)1,
3(4)33,
4(1)25,
4(2)7,
4(2)27,
4(3)23,
4(4)5,
4(4)11,
4(4)23,
4(4)37,
5(1)9,
5(2)15,
5(2)25,
5(2)33,
5(4)1,
5(4)33,
6(1)7,
6(1)19,
6(2)43,
6(3)17,
6(3)29,
6(3)37,
6(3)45,
6(4)13,
7(1)13,
7(1)23,
7(2)1,
7(2)17,
7(2)27,
7(2)41,
7(3)1,
7(3)19,
7(3)27,
7(3)43,
7(4)3,
7(4)9,
7(4)27,
7(4)33,
7(4)43,
7(4)61,
7(4)69,
7(4)91,
8(1)3,
8(1)25,
8(2)17,
8(2)31,
8(2)41,
8(3)1,
8(3)33,
8(3)41,
8(4)1,
8(4)21,
8(4)25,
8(4)37,
9(1)13,
9(1)23,
9(2)1,
9(2)11,
9(2)21,
9(3)21,
9(3)41,
15(3)183
- previously,
2(3)45,
4(4)1,
8(1)16
- proposed,
1(3)29,
2(4)15,
3(3)11,
4(1)1,
4(1)25,
6(1)7,
6(4)41,
7(1)23,
7(1)45,
7(4)61,
8(1)25,
9(1)13
- require,
2(3)37,
4(4)23,
5(3)1,
6(2)1,
7(1)33,
7(1)45,
7(2)27,
7(3)1,
8(1)33,
8(3)1,
8(4)1,
9(1)13,
9(3)41
- run,
5(1)1
- set,
1(1)21,
1(4)21,
2(2)9,
3(1)1,
3(2)1,
3(2)21,
3(3)1,
4(1)39,
4(3)11,
4(4)11,
6(3)29,
7(1)33,
7(1)45,
7(4)69,
8(3)1,
9(1)23,
9(2)21,
15(3)152
- several,
1(4)21,
2(4)45,
3(3)29,
4(1)11,
5(2)25,
5(2)33,
6(4)13,
7(1)13,
7(4)9,
8(2)41,
8(3)23
- simple,
1(2)1,
1(2)5,
1(2)25,
1(4)41,
2(2)1,
2(3)15,
2(4)45,
3(1)1,
3(3)29,
4(3)11,
4(4)11,
4(4)23,
5(3)1,
5(3)11,
5(4)9,
6(1)7,
6(2)27,
6(2)43,
6(3)29,
6(4)29,
6(4)41,
7(1)13,
7(2)1,
7(3)1,
7(3)19,
7(4)3,
7(4)53,
9(1)23,
9(3)41,
10(4)49,
13(2)21,
15(3)199,
16(1)25
- step,
1(1)21,
1(2)31,
2(2)31,
6(2)17,
9(1)35
- test,
1(1)33,
2(2)25,
2(4)1,
2(4)25,
3(1)1,
3(2)21,
4(1)25,
4(3)1,
5(1)9,
5(1)23,
6(1)29,
7(2)17,
7(4)9,
7(4)43,
7(4)69,
8(1)16,
8(1)25,
8(3)23,
8(4)37,
9(1)35,
10(3)13,
10(4)23,
12(4)35,
13(1)31
- than,
1(1)3,
1(1)33,
1(2)25,
1(3)7,
2(4)1,
3(1)15,
4(1)11,
4(2)37,
4(4)1,
5(1)1,
5(1)9,
5(2)33,
5(4)1,
6(1)7,
6(1)29,
6(2)27,
6(3)37,
6(4)1,
7(2)9,
7(4)69,
8(1)16,
8(1)25,
8(2)31,
8(2)41,
8(3)1,
8(3)23,
9(1)35,
9(3)21
- Torres, J. C.,
10(3)27
- Two-Dimensional,
5(4)13,
7(3)43,
10(1)17,
10(2)27,
15(3)152
- two-dimensional,
2(4)45,
4(1)39,
4(2)37,
4(4)23,
5(4)13,
7(2)9,
7(3)43,
8(2)31,
9(1)35
- worst,
7(4)53