Last update: Sun Oct 15 02:29:44 MDT 2017
Top |
Symbols |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Max:2001:CSC,
author = "Nelson Max",
title = "Consistent subdivision of convex polyhedra into
tetrahedra",
journal = j-J-GRAPHICS-TOOLS,
volume = "6",
number = "3",
pages = "29--36",
year = "2001",
CODEN = "JGTOFD",
ISSN = "1086-7651",
ISSN-L = "1086-7651",
bibdate = "Thu Apr 11 07:08:39 2002",
bibsource = "http://www.acm.org/jgt/issues.html;
http://www.math.utah.edu/pub/tex/bib/jgraphtools.bib",
URL = "http://www.acm.org/jgt/papers/Max01/",
abstract = "This paper presents a simple method of subdividing a
grid of convex polyhedral cells into tetrahedra such
that the subdivision of two adjacent cells divide their
common face into the same set of triangles. The method
is then generalized to grids of convex polytopes in $n$
dimensions.",
acknowledgement = ack-nhfb,
journal-URL = "http://www.tandfonline.com/loi/ujgt20",
}
Related entries
- $n$,
7(1)13,
7(2)9
- adjacent,
4(2)27
- cells,
7(3)27,
15(2)99
- common,
1(1)3,
1(1)21,
1(2)31,
2(1)1,
3(2)1,
3(3)29,
4(2)27,
4(4)37,
6(3)45,
7(1)23,
7(4)69,
8(3)23,
8(4)21
- consistent,
6(2)43
- convex,
1(2)1,
4(2)7,
5(4)25,
6(2)27,
7(1)13,
7(4)43,
12(2)1,
13(2)55
- dimension,
1(2)5,
1(4)21,
2(4)25,
3(2)21,
4(1)39,
4(3)11,
5(4)13,
6(1)29,
6(3)45,
7(1)23,
7(2)17,
7(2)27,
7(3)1,
8(1)25
- face,
1(2)31,
3(3)29,
9(1)35
- generalized,
2(1)1,
5(1)1,
6(3)17,
7(1)13,
8(3)41,
17(1)1
- grid,
5(3)1,
6(4)13,
12(2)33,
17(1)5,
17(1)17
- Max, Nelson,
3(1)33,
4(2)1,
10(4)61,
12(2)33
- polyhedra,
1(2)31
- polyhedral,
1(2)31
- polytope,
7(4)43
- present,
1(2)31,
1(3)1,
1(3)29,
1(4)1,
1(4)21,
2(1)21,
2(2)1,
2(2)25,
2(3)15,
2(3)45,
2(4)1,
3(1)1,
3(1)15,
3(2)15,
3(3)29,
3(4)1,
3(4)33,
4(1)25,
4(2)7,
4(2)27,
4(3)23,
4(4)5,
4(4)11,
4(4)23,
4(4)37,
5(1)9,
5(2)15,
5(2)25,
5(2)33,
5(4)1,
5(4)25,
5(4)33,
6(1)7,
6(1)19,
6(2)43,
6(3)17,
6(3)37,
6(3)45,
6(4)13,
7(1)13,
7(1)23,
7(2)1,
7(2)17,
7(2)27,
7(2)41,
7(3)1,
7(3)19,
7(3)27,
7(3)43,
7(4)3,
7(4)9,
7(4)27,
7(4)33,
7(4)43,
7(4)61,
7(4)69,
7(4)91,
8(1)3,
8(1)25,
8(2)17,
8(2)31,
8(2)41,
8(3)1,
8(3)33,
8(3)41,
8(4)1,
8(4)21,
8(4)25,
8(4)37,
9(1)13,
9(1)23,
9(2)1,
9(2)11,
9(2)21,
9(3)21,
9(3)41,
15(3)183
- same,
1(2)25,
3(1)1,
3(2)21,
3(3)1,
5(2)33,
7(1)23
- set,
1(1)21,
1(4)21,
2(2)9,
3(1)1,
3(2)1,
3(2)21,
3(3)1,
4(1)39,
4(3)11,
4(4)11,
5(4)25,
7(1)33,
7(1)45,
7(4)69,
8(3)1,
9(1)23,
9(2)21,
15(3)152
- simple,
1(2)1,
1(2)5,
1(2)25,
1(4)41,
2(2)1,
2(3)15,
2(4)45,
3(1)1,
3(3)29,
4(3)11,
4(4)11,
4(4)23,
5(3)1,
5(3)11,
5(4)9,
5(4)25,
6(1)7,
6(2)27,
6(2)43,
6(4)29,
6(4)41,
7(1)13,
7(2)1,
7(3)1,
7(3)19,
7(4)3,
7(4)53,
9(1)23,
9(3)41,
10(4)49,
13(2)21,
15(3)199,
16(1)25
- subdividing,
3(4)13
- subdivision,
2(2)1,
2(4)15,
5(3)1,
5(3)35,
6(1)35,
6(4)1,
6(4)13,
7(1)33,
9(3)1,
9(4)3,
12(3)7,
12(4)1,
14(2)61
- such,
1(1)21,
1(2)1,
1(2)25,
1(3)29,
2(1)1,
2(2)1,
2(3)1,
2(4)1,
3(3)1,
3(3)29,
3(4)13,
3(4)33,
4(1)1,
4(1)39,
4(2)7,
4(3)1,
5(3)1,
5(4)13,
6(1)1,
6(1)35,
6(3)37,
6(4)41,
7(1)33,
7(2)27,
7(3)1,
7(3)19,
7(3)27,
7(4)9,
8(1)3,
8(3)1,
8(4)21,
9(1)1,
9(3)1
- tetrahedra,
7(2)17
- then,
2(1)21,
3(2)21,
4(3)35,
6(1)19,
6(3)45,
8(1)3,
15(3)183
- triangle,
1(2)1,
2(1)21,
2(2)25,
3(1)1,
3(2)21,
3(4)1,
3(4)13,
4(1)25,
5(3)1,
6(1)29,
7(1)33,
7(4)69,
8(1)16,
8(1)25,
9(1)1,
9(3)41,
10(2)41,
10(3)1,
10(3)27,
11(2)51,
15(1)63,
15(4)216
- two,
1(1)3,
1(2)5,
1(3)1,
1(4)21,
2(2)9,
2(2)25,
2(3)45,
2(4)1,
4(1)39,
4(3)11,
4(3)35,
5(1)23,
5(2)33,
5(3)11,
6(1)35,
6(2)1,
6(3)45,
6(4)13,
7(1)1,
7(1)23,
7(2)17,
7(3)43,
8(1)25,
8(1)33,
8(2)31,
8(2)41,
8(4)21,
11(1)37,
14(1)63