Last update: Sun Oct 15 02:29:44 MDT 2017
Top |
Symbols |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Dawson:2003:CW,
author = "Robert J. MacG. Dawson",
title = "Crooked Wallpaper",
journal = j-J-GRAPHICS-TOOLS,
volume = "8",
number = "1",
pages = "33--46",
year = "2003",
CODEN = "JGTOFD",
ISSN = "1086-7651",
ISSN-L = "1086-7651",
bibdate = "Tue Dec 16 13:47:48 2003",
bibsource = "http://www.math.utah.edu/pub/tex/bib/jgraphtools.bib",
URL = "http://www.acm.org/jgt/papers/Dawson03/",
abstract = "It may be of interest to represent a periodic bitmap
pattern, with period vectors that are not horizontal
and vertical, using rectangular bitmaps. Holladay's
algorithm provides an efficient way to do this when the
tiled motif is small, using a single rectangle. We show
that this may not be efficient when the repeated motif
is larger, and give a generalization, using two
rectangles, that requires fewer partial blits.",
acknowledgement = ack-nhfb,
journal-URL = "http://www.tandfonline.com/loi/ujgt20",
}
Related entries
- bitmap,
8(2)17
- efficient,
1(2)5,
2(4)1,
2(4)25,
3(1)1,
3(1)33,
3(2)1,
4(3)11,
4(3)23,
4(4)1,
4(4)11,
4(4)37,
5(1)27,
5(2)15,
5(4)9,
6(4)41,
7(3)1,
7(4)69,
8(1)25,
8(2)1,
8(3)1,
8(4)37,
9(1)13,
9(3)41,
10(1)49,
10(2)51,
10(3)27,
10(4)23,
11(1)13,
11(2)27,
13(1)31,
13(2)37,
13(4)1,
13(4)61,
14(1)55,
15(4)216,
16(1)25,
16(2)85,
16(4)218,
17(1)53
- fewer,
7(2)9
- generalization,
9(3)1
- give,
1(2)5,
1(2)31,
4(4)1,
5(2)33,
7(1)1,
7(2)9,
8(3)33
- interest,
8(2)41
- larger,
4(2)1,
5(4)25,
8(3)1
- may,
1(2)31,
1(4)41,
3(1)1,
3(1)43,
3(4)33,
4(3)11,
4(3)35,
6(3)1,
7(4)33,
9(2)11
- not,
1(1)3,
1(3)29,
2(1)1,
2(2)9,
2(2)25,
2(2)31,
2(4)1,
3(2)21,
3(3)1,
3(4)13,
4(1)1,
4(1)39,
4(3)35,
5(3)11,
5(4)1,
6(1)35,
7(1)23,
7(1)45,
7(4)69,
8(1)25,
8(2)41,
8(4)21,
9(1)13,
9(1)35,
9(3)1,
15(3)183
- pattern,
1(2)25,
2(2)9,
2(3)29,
7(3)1,
11(2)27,
15(2)73,
15(3)177
- provide,
1(4)1,
2(3)37,
2(3)45,
2(4)25,
3(2)15,
3(2)21,
3(4)1,
3(4)33,
4(3)23,
5(1)9,
5(3)1,
5(3)35,
5(4)1,
6(3)37,
6(4)29,
7(4)19,
8(2)31,
8(4)37,
9(1)13,
9(1)23,
15(3)183
- rectangular,
8(1)3
- repeated,
7(3)27
- represent,
1(1)33,
2(1)21,
6(1)7,
8(4)37
- require,
2(3)37,
4(4)23,
5(3)1,
5(4)25,
6(2)1,
7(1)33,
7(1)45,
7(2)27,
7(3)1,
8(3)1,
8(4)1,
9(1)13,
9(3)41
- show,
1(1)21,
1(4)1,
2(4)1,
3(1)1,
3(2)21,
3(3)1,
3(3)29,
4(1)11,
4(2)37,
4(3)11,
4(4)33,
5(1)1,
5(2)15,
5(3)35,
6(1)29,
7(1)23,
7(3)13,
7(4)9,
7(4)69,
7(4)91,
8(3)1,
8(4)21,
9(1)1,
9(1)35,
17(4)159
- single,
1(2)31,
1(4)21,
3(1)15,
5(1)27,
6(1)19,
6(3)1,
7(3)43,
7(4)3,
15(3)183
- small,
1(3)13,
1(4)21,
2(2)1,
3(3)29,
7(1)23,
7(1)45,
7(2)9,
8(2)1,
8(4)1,
8(4)25,
9(1)23,
17(1)45
- tiled,
10(3)1,
11(4)1,
15(4)235
- two,
1(1)3,
1(2)5,
1(3)1,
1(4)21,
2(2)9,
2(2)25,
2(3)45,
2(4)1,
4(1)39,
4(3)11,
4(3)35,
5(1)23,
5(2)33,
5(3)11,
6(1)35,
6(2)1,
6(3)29,
6(3)45,
6(4)13,
7(1)1,
7(1)23,
7(2)17,
7(3)43,
8(1)25,
8(2)31,
8(2)41,
8(4)21,
11(1)37,
14(1)63
- using,
1(3)1,
1(3)7,
2(2)1,
2(4)1,
3(3)1,
3(3)29,
3(4)13,
4(1)1,
4(1)11,
4(2)7,
4(2)27,
4(3)23,
4(3)35,
4(4)11,
4(4)23,
5(1)1,
5(1)9,
5(2)1,
5(2)15,
5(2)33,
5(3)35,
5(4)13,
5(4)33,
6(1)19,
6(1)29,
6(2)27,
6(4)1,
6(4)29,
7(1)23,
7(1)33,
7(2)9,
7(2)27,
7(4)9,
7(4)19,
7(4)27,
7(4)33,
7(4)43,
7(4)53,
7(4)69,
7(4)91,
8(1)16,
8(1)25,
8(2)17,
8(3)1,
8(3)23,
8(3)33,
8(3)41,
8(4)1,
8(4)37,
9(1)13,
9(2)1,
9(3)21,
9(4)57,
10(3)1,
10(4)1,
10(4)61,
11(4)1,
11(4)17,
12(1)27,
12(1)47,
12(2)13,
12(3)17,
12(4)35,
13(3)53,
13(4)61,
14(4)1,
15(1)29,
15(4)225,
16(3)123,
17(1)17,
17(3)99,
17(4)151
- vector,
1(2)25,
2(1)21,
2(3)29,
3(1)43,
3(3)29,
4(4)1,
4(4)33,
7(4)53,
14(1)55,
16(3)151
- way,
1(2)5,
1(2)25,
1(4)21,
2(4)1,
3(1)43,
3(2)15,
3(3)1,
5(4)9,
7(4)19,
9(3)21
- when,
1(3)1,
3(4)13,
4(2)1,
4(4)37,
5(2)1,
5(3)11,
6(1)1,
6(4)1,
6(4)41,
7(2)9,
7(3)27,
7(4)9,
7(4)91,
9(2)11,
9(3)21