Entry Akenine-Moller:2003:DVS from jgraphtools.bib
Last update: Sun Oct 15 02:29:44 MDT 2017
Top |
Symbols |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Akenine-Moller:2003:DVS,
author = "Tomas Akenine-M{\"o}ller and Ulf Assarsson",
title = "On The Degree of Vertices in a Shadow Volume
Silhouette",
journal = j-J-GRAPHICS-TOOLS,
volume = "8",
number = "4",
pages = "21--24",
year = "2003",
CODEN = "JGTOFD",
ISSN = "1086-7651",
ISSN-L = "1086-7651",
bibdate = "Sat Dec 04 10:50:51 2004",
bibsource = "http://www.math.utah.edu/pub/tex/bib/jgraphtools.bib",
URL = "http://www.acm.org/jgt/papers/AkenineMollerAssarsson03/",
abstract = "In shadow volume rendering, the {\em shadow volume
silhouette\/} edges are used to create primitives that
model the shadow volume. A common misconception is that
the vertices on such silhouettes can only be connected
to two silhouette edges, i.e., have degree two.
Furthermore, some believe that such a vertex can have
any degree. In this short note, we present a geometric
proof that shows that the degree of a silhouette vertex
must be even, and not necessarily two.",
acknowledgement = ack-nhfb,
journal-URL = "http://www.tandfonline.com/loi/ujgt20",
}
Related entries
- Akenine-Möller, Tomas,
6(1)29,
10(2)13,
10(3)1,
12(1)3,
12(4)59,
15(2)123
- any,
1(2)31,
1(3)1,
1(4)41,
4(1)39,
7(1)33,
7(2)27,
7(4)83,
8(1)25,
8(2)1,
9(1)13,
9(2)21
- Assarsson, Ulf,
5(1)9,
12(2)59,
15(4)235
- common,
1(1)3,
1(1)21,
1(2)31,
2(1)1,
3(2)1,
3(3)29,
4(2)27,
4(4)37,
6(3)29,
6(3)45,
7(1)23,
7(4)69,
8(3)23
- connected,
3(2)21
- create,
3(3)1,
4(1)39,
4(4)11,
4(4)33,
5(3)1,
7(4)27,
9(1)1
- degree,
6(4)41
- edge,
3(2)21,
3(4)1,
4(1)1,
4(3)23,
5(3)1,
6(1)7,
6(1)19,
8(1)16,
8(4)37,
9(1)1,
9(1)35,
10(2)51,
13(2)55
- even,
5(4)33,
7(2)1,
7(4)69,
8(2)31,
9(3)21
- Furthermore,
2(4)1,
7(4)9,
9(1)1,
9(2)21
- geometric,
2(3)1,
3(1)43,
3(3)11,
3(4)1,
3(4)33,
4(2)7,
4(2)27,
4(4)37,
5(4)1,
6(4)1,
7(2)27,
7(3)43,
9(1)1,
13(3)15
- have,
1(3)29,
1(4)1,
2(1)29,
2(2)9,
2(3)45,
2(4)25,
3(1)15,
3(2)21,
3(3)29,
5(2)33,
6(2)27,
7(1)13,
7(2)1,
7(4)19,
7(4)61,
8(3)1,
9(1)1,
9(3)1
- i.e.,
1(4)21,
5(3)1,
8(2)1
- Möller, Tomas, Akenine-,
6(1)29,
10(2)13,
10(3)1,
12(1)3,
12(4)59,
15(2)123
- model,
1(1)3,
1(2)25,
1(4)21,
2(1)1,
2(2)31,
2(3)1,
2(3)15,
2(4)1,
3(2)1,
3(2)21,
3(3)11,
3(3)29,
4(4)11,
4(4)37,
5(2)15,
5(2)25,
6(3)17,
6(3)45,
7(4)33,
7(4)53,
7(4)61,
7(4)69,
8(3)33,
9(1)1,
9(2)1,
9(3)1,
9(3)21,
10(1)1,
11(1)51,
11(3)47,
17(4)139
- must,
2(3)45,
4(1)39,
8(2)41
- not,
1(1)3,
1(3)29,
2(1)1,
2(2)9,
2(2)25,
2(2)31,
2(4)1,
3(2)21,
3(3)1,
3(4)13,
4(1)1,
4(1)39,
4(3)35,
5(3)11,
5(4)1,
6(1)35,
7(1)23,
7(1)45,
7(4)69,
8(1)25,
8(1)33,
8(2)41,
9(1)13,
9(1)35,
9(3)1,
15(3)183
- note,
5(1)1,
7(3)13
- only,
1(3)1,
3(3)1,
3(3)29,
4(2)27,
5(1)9,
5(3)11,
5(4)25,
6(3)17,
6(4)29,
7(4)69,
8(2)41,
8(3)23,
8(3)41,
8(4)1,
8(4)25,
9(1)1,
9(3)21
- present,
1(2)31,
1(3)1,
1(3)29,
1(4)1,
1(4)21,
2(1)21,
2(2)1,
2(2)25,
2(3)15,
2(3)45,
2(4)1,
3(1)1,
3(1)15,
3(2)15,
3(3)29,
3(4)1,
3(4)33,
4(1)25,
4(2)7,
4(2)27,
4(3)23,
4(4)5,
4(4)11,
4(4)23,
4(4)37,
5(1)9,
5(2)15,
5(2)25,
5(2)33,
5(4)1,
5(4)25,
5(4)33,
6(1)7,
6(1)19,
6(2)43,
6(3)17,
6(3)29,
6(3)37,
6(3)45,
6(4)13,
7(1)13,
7(1)23,
7(2)1,
7(2)17,
7(2)27,
7(2)41,
7(3)1,
7(3)19,
7(3)27,
7(3)43,
7(4)3,
7(4)9,
7(4)27,
7(4)33,
7(4)43,
7(4)61,
7(4)69,
7(4)91,
8(1)3,
8(1)25,
8(2)17,
8(2)31,
8(2)41,
8(3)1,
8(3)33,
8(3)41,
8(4)1,
8(4)25,
8(4)37,
9(1)13,
9(1)23,
9(2)1,
9(2)11,
9(2)21,
9(3)21,
9(3)41,
15(3)183
- primitive,
1(4)21,
2(4)25,
4(2)7,
5(4)33,
6(2)43,
7(2)1
- rendering,
1(2)1,
1(3)1,
1(3)29,
2(2)31,
2(4)15,
3(2)1,
4(1)11,
4(2)27,
4(2)37,
4(3)1,
4(3)35,
4(4)11,
4(4)37,
5(4)33,
6(1)1,
6(1)19,
6(2)1,
6(3)1,
6(4)1,
7(2)1,
7(4)27,
7(4)33,
7(4)43,
7(4)53,
7(4)61,
7(4)69,
7(4)83,
8(3)1,
8(4)1,
8(4)25,
9(1)1,
9(3)21,
10(1)55,
10(2)1,
11(1)1,
13(2)21,
14(1)1,
14(2)61,
14(3)1,
14(4)57,
15(1)1,
16(1)40,
16(2)105,
16(3)123
- shadow,
1(4)41,
2(1)1,
2(2)1,
4(3)23,
6(1)19,
7(4)9,
8(1)3,
8(3)23,
9(1)1,
11(1)13,
11(2)59,
12(1)47,
12(2)59,
12(3)43,
12(4)59,
13(1)19,
13(1)45,
15(1)1
- short,
2(1)1,
2(4)15,
5(1)1
- show,
1(1)21,
1(4)1,
2(4)1,
3(1)1,
3(2)21,
3(3)1,
3(3)29,
4(1)11,
4(2)37,
4(3)11,
4(4)33,
5(1)1,
5(2)15,
5(3)35,
6(1)29,
7(1)23,
7(3)13,
7(4)9,
7(4)69,
7(4)91,
8(1)33,
8(3)1,
9(1)1,
9(1)35,
17(4)159
- silhouette,
6(1)19,
9(1)1,
9(1)35
- such,
1(1)21,
1(2)1,
1(2)25,
1(3)29,
2(1)1,
2(2)1,
2(3)1,
2(4)1,
3(3)1,
3(3)29,
3(4)13,
3(4)33,
4(1)1,
4(1)39,
4(2)7,
4(3)1,
5(3)1,
5(4)13,
6(1)1,
6(1)35,
6(3)29,
6(3)37,
6(4)41,
7(1)33,
7(2)27,
7(3)1,
7(3)19,
7(3)27,
7(4)9,
8(1)3,
8(3)1,
9(1)1,
9(3)1
- two,
1(1)3,
1(2)5,
1(3)1,
1(4)21,
2(2)9,
2(2)25,
2(3)45,
2(4)1,
4(1)39,
4(3)11,
4(3)35,
5(1)23,
5(2)33,
5(3)11,
6(1)35,
6(2)1,
6(3)29,
6(3)45,
6(4)13,
7(1)1,
7(1)23,
7(2)17,
7(3)43,
8(1)25,
8(1)33,
8(2)31,
8(2)41,
11(1)37,
14(1)63
- used,
1(3)1,
1(3)7,
1(3)13,
1(3)29,
1(4)21,
2(1)1,
2(1)29,
2(2)9,
2(2)25,
2(3)29,
2(3)45,
2(4)15,
3(1)43,
3(2)21,
3(3)1,
3(3)29,
4(1)1,
4(4)11,
4(4)37,
5(1)9,
6(1)29,
6(2)1,
6(2)43,
6(3)1,
6(4)41,
7(3)1,
7(3)19,
7(4)33,
7(4)53,
8(1)3,
8(2)1,
8(2)17,
8(3)41,
8(4)1,
8(4)25,
9(1)1,
9(3)1
- vertex,
1(2)1,
1(3)13,
3(1)43,
3(2)21,
4(2)1,
6(1)1,
7(2)9,
8(1)3,
8(2)41,
8(3)1,
12(4)47,
16(3)144
- volume,
1(2)31,
3(4)33,
4(1)11,
4(1)25,
4(4)23,
5(1)9,
5(2)15,
7(4)19,
8(3)1,
8(3)23,
9(1)1,
10(1)55,
11(4)61,
12(4)59,
13(2)21,
14(1)1,
15(3)141