Last update: Sun Oct 15 02:29:44 MDT 2017
Top |
Symbols |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Dur:2003:PLP,
author = "Arne D{\"u}r and Sylvia Leimgruber",
title = "A Practical List-Priority Algorithm for 3{D}
Polygons",
journal = j-J-GRAPHICS-TOOLS,
volume = "8",
number = "4",
pages = "25--36",
year = "2003",
CODEN = "JGTOFD",
ISSN = "1086-7651",
ISSN-L = "1086-7651",
bibdate = "Sat Dec 04 10:50:51 2004",
bibsource = "http://www.math.utah.edu/pub/tex/bib/jgraphtools.bib",
URL = "http://www.acm.org/jgt/papers/DuerLeimgruber03/",
abstract = "To determine a correct order for rendering
three-dimensional polygons, the commonly used Binary
Space-Partitioning (BSP) tree algorithm recursively
splits polygons whenever points of the polygons lie on
both sides of the spanning plane which, for large
schemes, significantly increases the number of
polygons. To keep the number of new polygons small, we
present an alternative algorithm that splits only
penetrating polygons and applies a topological sort to
the resulting polygons with respect to the covering
relation. Although the existence of a correct order
cannot be guaranteed in general, the new algorithm PITS
(polygon intersection topological sorting) has proved
to be successful for many polygonal approximations of
famous surfaces from geometry where it has been used to
produce quality PostScript output from OpenGL.",
acknowledgement = ack-nhfb,
journal-URL = "http://www.tandfonline.com/loi/ujgt20",
}
Related entries
- alternative,
16(1)12
- although,
1(3)29,
2(1)29,
3(2)1,
7(4)27,
9(1)23,
9(3)1,
15(3)183
- applies,
5(3)11,
8(1)3
- approximation,
1(2)5,
3(2)15,
4(2)1,
4(2)37,
5(3)1,
5(4)1,
5(4)33,
7(4)33,
7(4)69,
8(4)1,
9(1)1,
11(4)39,
17(3)67
- been,
1(3)29,
1(4)1,
2(1)1,
2(1)29,
2(2)9,
2(3)45,
3(2)1,
3(2)21,
3(3)29,
4(1)11,
7(2)1,
7(3)27,
9(3)1
- binary,
2(4)15
- both,
1(1)3,
1(3)1,
3(3)1,
3(3)29,
4(1)1,
4(1)11,
4(4)5,
4(4)11,
5(1)1,
5(2)15,
5(2)33,
5(3)11,
6(1)35,
9(1)13
- BSP,
2(4)15
- commonly,
2(4)15,
3(1)43
- correct,
1(4)1,
8(2)1
- Dür, Arne,
11(1)51
- determine,
4(3)11,
5(2)15,
6(2)17,
6(2)27,
7(3)43,
8(4)37,
9(3)1
- dimensional, three-,
1(1)21,
1(1)33,
2(3)15,
2(3)37,
3(3)1,
3(4)33,
4(2)27,
4(2)37,
4(4)23,
5(2)15,
6(3)1,
6(3)45,
6(4)41,
7(2)9,
7(2)27,
8(2)41,
8(3)1
- existence,
9(2)1
- general,
1(2)31,
3(2)21,
3(4)1,
3(4)33,
5(1)27,
6(1)7,
6(1)35,
7(4)69,
8(1)25,
9(2)21,
12(1)61
- geometry,
1(1)21,
3(2)21,
3(3)1,
3(4)13,
3(4)33,
4(3)11,
7(2)1,
7(3)27,
9(1)1,
10(1)55
- has,
1(3)29,
2(1)1,
2(1)29,
2(2)1,
2(3)45,
2(4)1,
3(1)1,
3(2)1,
3(2)21,
3(3)29,
4(1)11,
4(2)7,
4(3)23,
5(2)25,
5(3)11,
6(1)19,
6(4)13,
7(1)33,
7(3)27,
7(4)61,
9(1)13,
9(2)21,
9(3)1
- increase,
4(3)1,
7(4)91,
8(4)37,
9(3)1
- intersection,
2(1)21,
2(2)25,
2(4)25,
4(1)25,
4(3)11,
7(2)41,
7(3)19,
8(1)16,
8(4)37,
9(1)35,
9(3)41,
10(1)49,
10(2)13,
10(3)13,
10(4)23,
13(1)31
- keep,
8(2)41
- large,
5(2)1,
6(2)1,
6(4)13,
6(4)41,
7(1)45,
7(4)69,
7(4)83,
17(4)113
- lie,
1(1)21,
2(1)21
- many,
1(4)1,
2(1)1,
2(1)29,
2(3)45,
3(2)1,
3(3)1,
3(3)29,
3(4)1,
4(1)39,
4(3)1,
6(2)43,
7(1)13,
7(3)1,
7(4)33,
8(2)1,
9(1)1,
9(3)1,
9(3)41
- new,
1(1)3,
2(4)15,
3(4)1,
3(4)33,
4(1)1,
4(1)39,
4(2)1,
4(3)23,
4(4)23,
5(1)1,
5(2)15,
5(4)25,
6(1)7,
6(2)1,
6(3)37,
7(1)13,
7(2)41,
7(4)69,
8(1)3,
8(3)1,
9(1)23,
9(2)1,
9(3)21
- number,
1(4)21,
2(2)31,
3(1)1,
4(1)39,
4(4)23,
5(1)9,
6(2)1,
6(4)13,
7(1)33,
7(3)1,
7(4)53,
8(2)17,
8(3)41,
8(4)1,
9(1)1
- only,
1(3)1,
3(3)1,
3(3)29,
4(2)27,
5(1)9,
5(3)11,
5(4)25,
6(3)17,
6(4)29,
7(4)69,
8(2)41,
8(3)23,
8(3)41,
8(4)1,
8(4)21,
9(1)1,
9(3)21
- OpenGL,
3(3)1,
5(4)33,
6(3)1,
7(1)33,
7(4)3,
8(3)1,
8(4)1
- order,
1(1)33,
2(2)31,
3(4)13,
6(4)1,
7(4)69,
8(2)41,
8(3)1,
9(1)1,
9(2)21,
9(3)1,
15(3)183
- output,
3(1)33,
3(3)11,
5(3)11
- plane,
2(1)21,
2(2)9,
2(3)37,
5(1)9,
5(2)33,
5(4)25,
6(1)19,
6(2)27,
7(3)19,
9(1)35,
14(2)25
- point,
1(2)31,
1(4)21,
2(1)29,
2(2)9,
2(2)31,
3(4)1,
4(1)25,
4(4)37,
5(1)1,
5(2)15,
5(3)1,
5(4)1,
5(4)9,
5(4)25,
6(2)43,
6(4)29,
7(1)33,
7(2)41,
7(3)1,
7(3)27,
7(3)43,
7(4)43,
7(4)69,
8(1)3,
8(3)1,
9(1)1,
9(2)11,
10(2)1,
10(3)9,
10(3)27,
15(3)152
- polygon,
1(2)1,
1(2)5,
1(2)25,
3(1)1,
4(1)1,
6(1)35,
6(2)27,
7(1)13,
7(2)9,
9(1)1,
9(3)41,
10(1)17,
10(2)27,
10(2)51,
13(2)55
- polygonal,
1(1)21,
1(2)1,
1(2)5,
2(3)1,
3(1)43,
3(3)11,
3(4)1,
4(2)1,
4(4)5,
4(4)23,
5(1)1,
6(1)1,
7(3)27,
7(4)33
- practical,
1(2)5,
2(4)25,
3(1)1,
3(2)21,
3(3)29,
3(4)33,
5(1)27,
5(4)25,
6(2)1,
7(4)9,
8(2)41,
9(3)1,
15(3)183,
16(3)160
- present,
1(2)31,
1(3)1,
1(3)29,
1(4)1,
1(4)21,
2(1)21,
2(2)1,
2(2)25,
2(3)15,
2(3)45,
2(4)1,
3(1)1,
3(1)15,
3(2)15,
3(3)29,
3(4)1,
3(4)33,
4(1)25,
4(2)7,
4(2)27,
4(3)23,
4(4)5,
4(4)11,
4(4)23,
4(4)37,
5(1)9,
5(2)15,
5(2)25,
5(2)33,
5(4)1,
5(4)25,
5(4)33,
6(1)7,
6(1)19,
6(2)43,
6(3)17,
6(3)29,
6(3)37,
6(3)45,
6(4)13,
7(1)13,
7(1)23,
7(2)1,
7(2)17,
7(2)27,
7(2)41,
7(3)1,
7(3)19,
7(3)27,
7(3)43,
7(4)3,
7(4)9,
7(4)27,
7(4)33,
7(4)43,
7(4)61,
7(4)69,
7(4)91,
8(1)3,
8(1)25,
8(2)17,
8(2)31,
8(2)41,
8(3)1,
8(3)33,
8(3)41,
8(4)1,
8(4)21,
8(4)37,
9(1)13,
9(1)23,
9(2)1,
9(2)11,
9(2)21,
9(3)21,
9(3)41,
15(3)183
- produce,
1(1)21,
2(2)31,
3(3)1,
5(1)1,
5(3)11,
6(1)35,
6(2)43,
6(3)17,
7(1)45,
9(1)23
- proved,
2(4)25
- quality,
2(1)29,
4(1)11,
6(1)19,
7(4)9,
8(2)31,
8(2)41
- recursively,
1(2)5
- relation,
2(3)1,
4(1)1,
6(2)27
- rendering,
1(2)1,
1(3)1,
1(3)29,
2(2)31,
2(4)15,
3(2)1,
4(1)11,
4(2)27,
4(2)37,
4(3)1,
4(3)35,
4(4)11,
4(4)37,
5(4)33,
6(1)1,
6(1)19,
6(2)1,
6(3)1,
6(4)1,
7(2)1,
7(4)27,
7(4)33,
7(4)43,
7(4)53,
7(4)61,
7(4)69,
7(4)83,
8(3)1,
8(4)1,
8(4)21,
9(1)1,
9(3)21,
10(1)55,
10(2)1,
11(1)1,
13(2)21,
14(1)1,
14(2)61,
14(3)1,
14(4)57,
15(1)1,
16(1)40,
16(2)105,
16(3)123
- respect,
3(3)29,
8(2)17
- resulting,
1(2)25,
2(2)31,
5(1)1,
5(3)1,
7(1)45,
8(1)25
- schemes,
5(3)35,
6(1)7
- side,
8(1)16
- significantly,
2(4)15,
5(2)33,
5(3)11,
6(4)1,
7(2)41
- small,
1(3)13,
1(4)21,
2(2)1,
3(3)29,
7(1)23,
7(1)45,
7(2)9,
8(1)33,
8(2)1,
8(4)1,
9(1)23,
17(1)45
- sorting,
3(4)13
- splits,
1(2)1
- surface,
1(2)1,
1(2)5,
1(2)25,
1(3)7,
1(3)13,
1(4)21,
2(2)9,
2(2)31,
2(3)15,
2(3)29,
3(1)43,
3(2)15,
3(4)33,
4(1)1,
4(2)1,
4(3)1,
4(4)37,
5(1)27,
5(3)1,
5(3)35,
6(2)27,
6(3)17,
6(4)1,
6(4)29,
6(4)41,
7(1)33,
7(4)43,
7(4)69,
8(4)1,
9(1)1,
9(2)21,
9(3)41,
11(2)1,
12(3)7,
14(1)17,
14(2)61,
14(3)1,
14(3)35,
15(1)49
- three-dimensional,
1(1)21,
1(1)33,
2(3)15,
2(3)37,
3(3)1,
3(4)33,
4(2)27,
4(2)37,
4(4)23,
5(2)15,
6(3)1,
6(3)45,
6(4)41,
7(2)9,
7(2)27,
8(2)41,
8(3)1
- topological,
3(4)1,
3(4)13,
8(2)1
- tree,
2(4)1,
2(4)15,
7(3)1,
9(2)1,
11(4)17,
13(1)57,
15(1)1
- used,
1(3)1,
1(3)7,
1(3)13,
1(3)29,
1(4)21,
2(1)1,
2(1)29,
2(2)9,
2(2)25,
2(3)29,
2(3)45,
2(4)15,
3(1)43,
3(2)21,
3(3)1,
3(3)29,
4(1)1,
4(4)11,
4(4)37,
5(1)9,
6(1)29,
6(2)1,
6(2)43,
6(3)1,
6(4)41,
7(3)1,
7(3)19,
7(4)33,
7(4)53,
8(1)3,
8(2)1,
8(2)17,
8(3)41,
8(4)1,
8(4)21,
9(1)1,
9(3)1
- where,
2(1)21,
2(3)45,
3(3)1,
5(2)33,
6(1)1,
7(2)9,
7(3)19
- which,
1(3)1,
1(3)13,
1(3)29,
1(4)41,
2(1)21,
2(2)25,
2(2)31,
3(1)43,
3(2)21,
3(4)1,
4(1)11,
4(1)25,
4(1)39,
4(3)1,
4(3)11,
4(3)23,
4(4)5,
5(1)1,
5(1)9,
5(2)15,
5(3)1,
5(4)1,
6(1)7,
6(2)43,
6(3)37,
6(4)41,
7(3)27,
7(4)3,
7(4)69,
7(4)83,
8(1)25,
8(2)41,
9(1)35,
9(2)11,
9(2)21,
9(3)21,
9(3)41