Last update: Sun Oct 15 02:29:44 MDT 2017
Top |
Symbols |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Cignoni:1996:TCP,
author = "P. Cignoni and C. Montani and R. Scopigno",
title = "Triangulating convex polygons having ${T}$-vertices",
journal = j-J-GRAPHICS-TOOLS,
volume = "1",
number = "2",
pages = "1--4",
year = "1996",
CODEN = "JGTOFD",
ISSN = "1086-7651",
ISSN-L = "1086-7651",
bibdate = "Thu Oct 12 17:08:13 2000",
bibsource = "http://www.acm.org/jgt/issues.html;
http://www.math.utah.edu/pub/tex/bib/jgraphtools.bib",
URL = "http://www.acm.org/jgt/papers/CignoniMontaniScopigno96/",
abstract = "A technique to triangulate planar convex polygons
having T-vertices is described. Simple strip or fan
tessellation of a polygon with T-vertices can result in
zero-area triangles and compromise the rendering
process. Our technique splits such a polygon into one
triangle strip and, at most, one triangle fan. The
technique is particularly useful in multiresolution or
adaptive representation of polygonal surfaces and the
simplification of surfaces.",
acknowledgement = ack-nhfb,
journal-URL = "http://www.tandfonline.com/loi/ujgt20",
}
Related entries
- adaptive,
2(2)1,
2(2)31,
4(1)11,
5(3)1,
6(4)29,
9(2)21,
10(1)55,
12(2)13,
12(4)1,
15(1)29
- Cignoni, P.,
2(3)15,
5(4)9
- convex,
4(2)7,
5(4)25,
6(2)27,
6(3)29,
7(1)13,
7(4)43,
12(2)1,
13(2)55
- described,
3(2)1,
3(3)11,
4(1)11,
5(1)1,
5(3)35,
6(4)41,
7(1)33
- Montani, C.,
2(3)15
- most,
1(1)3,
1(1)21,
1(4)1,
3(1)15,
3(1)43,
3(2)1,
3(3)29,
4(3)1,
4(4)5,
4(4)11,
6(3)17,
9(1)23,
15(3)183
- multiresolution,
5(3)35,
9(2)21,
12(1)27,
15(2)99
- one,
1(3)1,
2(2)31,
2(4)15,
3(3)1,
4(2)27,
4(3)11,
4(4)1,
6(1)35,
6(2)27,
6(2)43,
7(2)9,
8(1)16,
8(1)25,
8(3)1,
9(3)21,
14(1)63
- planar,
1(2)25,
6(1)7,
6(1)19,
7(2)9,
7(4)33
- polygon,
1(2)5,
1(2)25,
3(1)1,
4(1)1,
6(1)35,
6(2)27,
7(1)13,
7(2)9,
8(4)25,
9(1)1,
9(3)41,
10(1)17,
10(2)27,
10(2)51,
13(2)55
- polygonal,
1(1)21,
1(2)5,
2(3)1,
3(1)43,
3(3)11,
3(4)1,
4(2)1,
4(4)5,
4(4)23,
5(1)1,
6(1)1,
7(3)27,
7(4)33,
8(4)25
- process,
4(4)11,
4(4)23,
4(4)37,
6(1)35,
7(1)45,
7(4)33
- rendering,
1(3)1,
1(3)29,
2(2)31,
2(4)15,
3(2)1,
4(1)11,
4(2)27,
4(2)37,
4(3)1,
4(3)35,
4(4)11,
4(4)37,
5(4)33,
6(1)1,
6(1)19,
6(2)1,
6(3)1,
6(4)1,
7(2)1,
7(4)27,
7(4)33,
7(4)43,
7(4)53,
7(4)61,
7(4)69,
7(4)83,
8(3)1,
8(4)1,
8(4)21,
8(4)25,
9(1)1,
9(3)21,
10(1)55,
10(2)1,
11(1)1,
13(2)21,
14(1)1,
14(2)61,
14(3)1,
14(4)57,
15(1)1,
16(1)40,
16(2)105,
16(3)123
- representation,
1(1)21,
1(2)5,
2(4)1,
3(4)1,
3(4)33,
4(2)27,
6(1)7,
7(3)27,
8(3)1,
9(2)21,
13(3)15,
15(3)183
- result,
1(1)33,
1(2)31,
2(2)1,
2(2)31,
2(3)29,
3(4)33,
4(1)11,
4(4)1,
4(4)11,
5(1)1,
5(1)9,
5(2)33,
5(4)1,
6(2)27,
6(3)45,
7(1)23,
7(4)69,
7(4)91,
8(2)1,
8(2)31,
8(3)1,
9(1)1,
9(1)23,
9(1)35,
9(3)1,
15(3)183
- Scopigno, R.,
2(3)15
- simple,
1(2)5,
1(2)25,
1(4)41,
2(2)1,
2(3)15,
2(4)45,
3(1)1,
3(3)29,
4(3)11,
4(4)11,
4(4)23,
5(3)1,
5(3)11,
5(4)9,
5(4)25,
6(1)7,
6(2)27,
6(2)43,
6(3)29,
6(4)29,
6(4)41,
7(1)13,
7(2)1,
7(3)1,
7(3)19,
7(4)3,
7(4)53,
9(1)23,
9(3)41,
10(4)49,
13(2)21,
15(3)199,
16(1)25
- simplification,
1(4)21,
8(2)41
- splits,
8(4)25
- such,
1(1)21,
1(2)25,
1(3)29,
2(1)1,
2(2)1,
2(3)1,
2(4)1,
3(3)1,
3(3)29,
3(4)13,
3(4)33,
4(1)1,
4(1)39,
4(2)7,
4(3)1,
5(3)1,
5(4)13,
6(1)1,
6(1)35,
6(3)29,
6(3)37,
6(4)41,
7(1)33,
7(2)27,
7(3)1,
7(3)19,
7(3)27,
7(4)9,
8(1)3,
8(3)1,
8(4)21,
9(1)1,
9(3)1
- surface,
1(2)5,
1(2)25,
1(3)7,
1(3)13,
1(4)21,
2(2)9,
2(2)31,
2(3)15,
2(3)29,
3(1)43,
3(2)15,
3(4)33,
4(1)1,
4(2)1,
4(3)1,
4(4)37,
5(1)27,
5(3)1,
5(3)35,
6(2)27,
6(3)17,
6(4)1,
6(4)29,
6(4)41,
7(1)33,
7(4)43,
7(4)69,
8(4)1,
8(4)25,
9(1)1,
9(2)21,
9(3)41,
11(2)1,
12(3)7,
14(1)17,
14(2)61,
14(3)1,
14(3)35,
15(1)49
- technique,
1(1)21,
2(1)1,
2(2)1,
2(2)31,
2(3)1,
2(3)37,
3(1)1,
3(1)15,
3(2)21,
3(3)1,
3(3)29,
4(1)11,
4(3)23,
4(4)23,
4(4)37,
5(1)9,
5(2)1,
5(3)35,
5(4)9,
6(1)1,
6(1)19,
6(3)45,
6(4)29,
7(1)1,
7(2)1,
7(2)17,
7(2)41,
7(3)19,
7(4)3,
7(4)9,
7(4)19,
8(1)3,
8(2)1,
8(2)17,
8(3)1,
8(3)23,
8(3)33,
8(3)41,
8(4)1,
9(1)13,
9(1)23,
9(1)35,
9(2)1,
9(3)1,
9(3)41,
11(2)1,
12(3)25
- tessellation,
3(1)43,
16(3)123
- triangle,
2(1)21,
2(2)25,
3(1)1,
3(2)21,
3(4)1,
3(4)13,
4(1)25,
5(3)1,
6(1)29,
6(3)29,
7(1)33,
7(4)69,
8(1)16,
8(1)25,
9(1)1,
9(3)41,
10(2)41,
10(3)1,
10(3)27,
11(2)51,
15(1)63,
15(4)216
- useful,
2(2)9,
2(3)45,
3(4)13,
6(2)43,
7(3)19,
8(3)23,
9(1)1,
9(1)13,
9(2)11
- vertex,
1(3)13,
3(1)43,
3(2)21,
4(2)1,
6(1)1,
7(2)9,
8(1)3,
8(2)41,
8(3)1,
8(4)21,
12(4)47,
16(3)144