Last update: Sun Oct 15 02:29:44 MDT 2017
Top |
Symbols |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Jin:2001:CSL,
author = "Xiaogang Jin and Chiew-Lan Tai and Jieqing Feng and
Qunsheng Peng",
title = "Convolution surfaces for line skeletons with
polynomial weight distributions",
journal = j-J-GRAPHICS-TOOLS,
volume = "6",
number = "3",
pages = "17--28",
year = "2001",
CODEN = "JGTOFD",
ISSN = "1086-7651",
ISSN-L = "1086-7651",
bibdate = "Thu Apr 11 07:08:39 2002",
bibsource = "http://www.acm.org/jgt/issues.html;
http://www.math.utah.edu/pub/tex/bib/jgraphtools.bib",
URL = "http://www.acm.org/jgt/papers/JinEtAl01/",
abstract = "Convolution surfaces generalize point-based implicit
surfaces to incorporate higher-dimensional skeletal
elements; line segments can be considered the most
fundamental skeletal elements since they can
approximate curve skeletons. Existing analytical models
for line-segment skeletons assume uniform weight
distributions, and thus they can produce only
constant-radius convolution surfaces. This paper
presents an analytical solution for convolving
line-segment skeletons with a variable kernel modulated
by a polynomial function, allowing generalized
cylindrical convolution surfaces to be modeled
conveniently. Its computational requirement is
competitive with that of uniform weight distribution.
The source code of the field computation is available
online.",
acknowledgement = ack-nhfb,
journal-URL = "http://www.tandfonline.com/loi/ujgt20",
}
Related entries
- allowing,
6(1)7,
15(3)183
- analytical,
4(4)5,
7(4)61
- approximate,
3(2)21,
6(4)29,
7(2)9,
7(4)3,
7(4)53,
9(2)1,
9(3)21,
10(4)33,
12(1)27,
15(4)210,
15(4)225
- available,
1(4)21,
3(1)15,
3(4)1,
3(4)13,
4(4)5,
5(1)23,
5(3)1,
6(1)29,
7(1)23,
7(1)45,
7(2)17,
7(2)41,
7(3)1,
7(3)13,
7(3)43,
7(4)9,
7(4)19,
8(1)16,
8(1)25,
8(2)1,
8(3)41,
8(4)1,
8(4)37,
9(1)13,
9(1)23,
9(2)11,
9(2)21,
9(3)1,
9(3)21,
9(3)41,
15(3)183
- based, point-,
5(2)33
- code,
2(2)25,
2(3)45,
5(1)23,
5(3)1,
6(1)29,
6(2)43,
7(1)23,
7(1)45,
7(2)17,
7(2)27,
7(3)1,
7(3)43,
7(4)91,
8(1)16,
8(1)25,
8(2)1,
8(3)23,
8(3)41,
8(4)37,
9(1)13,
9(1)23,
9(2)11,
9(2)21,
9(3)41
- computation,
1(1)33,
1(2)25,
1(2)31,
1(3)1,
2(3)45,
4(1)11,
4(2)27,
4(2)37,
4(3)1,
4(3)11,
6(4)29,
7(1)13,
7(1)23,
7(2)9,
7(2)17,
7(4)43,
8(3)23,
9(1)13,
9(2)11,
9(3)1,
11(2)37,
12(4)47,
15(3)183
- computational,
1(2)25,
2(2)9,
4(3)11,
7(1)23,
16(2)85
- considered,
3(1)43
- convolution,
8(3)1,
15(1)13
- curve,
1(3)13,
3(4)33,
5(2)1,
6(1)35,
6(3)45,
6(4)29,
7(3)13,
7(3)43,
8(3)41,
11(1)37,
11(3)17,
13(2)37,
16(1)25,
16(2)105,
16(3)123
- cylindrical,
1(1)21,
7(4)33,
16(3)144
- distribution,
1(3)29,
6(3)1,
7(1)33,
7(4)9,
9(3)1,
15(1)29
- element,
2(2)31,
6(1)7
- existing,
1(3)7,
3(2)15,
3(4)13,
3(4)33,
4(1)1,
4(1)11,
4(4)5,
4(4)23,
5(1)27,
6(3)1,
7(2)1,
7(4)3,
7(4)19,
8(1)25,
8(3)23,
9(1)35,
9(2)1
- Feng, Jieqing,
3(3)11,
5(1)1
- field,
6(2)1,
6(2)43,
7(3)1,
10(4)49,
12(1)27,
15(2)123,
15(3)183
- function,
2(2)31,
2(4)45,
4(4)1,
5(3)11,
6(3)45,
6(4)41,
7(1)23,
7(2)27,
9(3)1,
15(3)183
- generalize,
7(3)1,
8(3)41
- generalized,
2(1)1,
5(1)1,
6(3)29,
7(1)13,
8(3)41,
17(1)1
- implicit,
1(2)5,
6(4)41
- incorporate,
3(1)43
- Jin, Xiaogang,
5(2)15
- line,
1(4)1,
2(1)29,
4(3)11,
6(2)17,
7(3)43,
9(2)11,
10(3)13,
13(2)55,
16(1)12,
16(4)233
- model,
1(1)3,
1(2)25,
1(4)21,
2(1)1,
2(2)31,
2(3)1,
2(3)15,
2(4)1,
3(2)1,
3(2)21,
3(3)11,
3(3)29,
4(4)11,
4(4)37,
5(2)15,
5(2)25,
6(3)45,
7(4)33,
7(4)53,
7(4)61,
7(4)69,
8(3)33,
8(4)21,
9(1)1,
9(2)1,
9(3)1,
9(3)21,
10(1)1,
11(1)51,
11(3)47,
17(4)139
- modeled,
2(2)31,
4(2)7,
4(4)37,
9(3)21
- most,
1(1)3,
1(1)21,
1(2)1,
1(4)1,
3(1)15,
3(1)43,
3(2)1,
3(3)29,
4(3)1,
4(4)5,
4(4)11,
9(1)23,
15(3)183
- online,
5(1)23,
5(3)1,
6(1)29,
7(1)23,
7(1)45,
7(3)1,
7(3)13,
7(3)43,
8(1)16,
8(1)25,
8(2)1,
8(3)41,
8(4)1,
8(4)37,
9(1)13,
9(1)23,
9(2)11,
9(2)21,
9(3)41
- only,
1(3)1,
3(3)1,
3(3)29,
4(2)27,
5(1)9,
5(3)11,
5(4)25,
6(4)29,
7(4)69,
8(2)41,
8(3)23,
8(3)41,
8(4)1,
8(4)21,
8(4)25,
9(1)1,
9(3)21
- Peng, Qunsheng,
5(1)1
- point-based,
5(2)33
- polynomial,
4(2)1,
5(1)1,
7(1)23,
10(1)27
- present,
1(2)31,
1(3)1,
1(3)29,
1(4)1,
1(4)21,
2(1)21,
2(2)1,
2(2)25,
2(3)15,
2(3)45,
2(4)1,
3(1)1,
3(1)15,
3(2)15,
3(3)29,
3(4)1,
3(4)33,
4(1)25,
4(2)7,
4(2)27,
4(3)23,
4(4)5,
4(4)11,
4(4)23,
4(4)37,
5(1)9,
5(2)15,
5(2)25,
5(2)33,
5(4)1,
5(4)25,
5(4)33,
6(1)7,
6(1)19,
6(2)43,
6(3)29,
6(3)37,
6(3)45,
6(4)13,
7(1)13,
7(1)23,
7(2)1,
7(2)17,
7(2)27,
7(2)41,
7(3)1,
7(3)19,
7(3)27,
7(3)43,
7(4)3,
7(4)9,
7(4)27,
7(4)33,
7(4)43,
7(4)61,
7(4)69,
7(4)91,
8(1)3,
8(1)25,
8(2)17,
8(2)31,
8(2)41,
8(3)1,
8(3)33,
8(3)41,
8(4)1,
8(4)21,
8(4)25,
8(4)37,
9(1)13,
9(1)23,
9(2)1,
9(2)11,
9(2)21,
9(3)21,
9(3)41,
15(3)183
- produce,
1(1)21,
2(2)31,
3(3)1,
5(1)1,
5(3)11,
6(1)35,
6(2)43,
7(1)45,
8(4)25,
9(1)23
- requirement,
2(2)1,
3(1)1,
3(4)1,
6(2)1,
9(2)21
- segment,
6(2)27
- since,
3(1)43,
3(2)15,
5(3)11,
6(4)41,
7(4)83
- skeleton,
2(3)1
- solution,
2(1)29,
2(2)31,
3(4)33,
4(3)11,
4(4)11,
5(1)9,
7(1)23,
7(3)27,
15(3)183
- source,
1(2)25,
2(1)1,
5(2)15,
5(3)1,
7(1)23,
7(1)45,
7(2)17,
7(2)27,
7(3)1,
7(3)43,
7(4)9,
8(1)25,
8(2)1,
8(3)23,
8(3)41,
8(4)37,
9(1)13,
9(1)23,
9(2)11,
9(2)21,
9(3)41
- surface,
1(2)1,
1(2)5,
1(2)25,
1(3)7,
1(3)13,
1(4)21,
2(2)9,
2(2)31,
2(3)15,
2(3)29,
3(1)43,
3(2)15,
3(4)33,
4(1)1,
4(2)1,
4(3)1,
4(4)37,
5(1)27,
5(3)1,
5(3)35,
6(2)27,
6(4)1,
6(4)29,
6(4)41,
7(1)33,
7(4)43,
7(4)69,
8(4)1,
8(4)25,
9(1)1,
9(2)21,
9(3)41,
11(2)1,
12(3)7,
14(1)17,
14(2)61,
14(3)1,
14(3)35,
15(1)49
- thus,
2(4)1,
4(1)1,
7(2)17
- uniform,
1(2)5,
1(2)31,
3(2)21,
4(1)39,
5(3)1,
6(1)35,
6(4)13,
13(4)61,
17(1)17
- weight,
4(2)1