Entry Xiao:2007:SNM from talip.bib
Last update: Sun Oct 15 02:55:04 MDT 2017
Top |
Symbols |
Numbers |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Xiao:2007:SNM,
author = "Jinghui Xiao and Xiaolong Wang and Bingquan Liu",
title = "The study of a nonstationary maximum entropy {Markov}
model and its application on the pos-tagging task",
journal = j-TALIP,
volume = "6",
number = "2",
pages = "7:1--7:??",
month = sep,
year = "2007",
CODEN = "????",
DOI = "https://doi.org/10.1145/1282080.1282082",
ISSN = "1530-0226 (print), 1558-3430 (electronic)",
ISSN-L = "1530-0226",
bibdate = "Mon Jun 16 17:11:28 MDT 2008",
bibsource = "http://portal.acm.org/;
http://www.math.utah.edu/pub/tex/bib/talip.bib",
abstract = "Sequence labeling is a core task in natural language
processing. The maximum entropy Markov model (MEMM) is
a powerful tool in performing this task. This article
enhances the traditional MEMM by exploiting the
positional information of language elements. The
stationary hypothesis is relaxed in MEMM, and the
nonstationary MEMM (NS-MEMM) is proposed. Several
related issues are discussed in detail, including the
representation of positional information, NS-MEMM
implementation, smoothing techniques, and the space
complexity issue. Furthermore, the asymmetric NS-MEMM
presents a more flexible way to exploit positional
information. In the experiments, NS-MEMM is evaluated
on both the Chinese and the English pos-tagging tasks.
According to the experimental results, NS-MEMM yields
effective improvements over MEMM by exploiting
positional information. The smoothing techniques in
this article effectively solve the NS-MEMM
data-sparseness problem; the asymmetric NS-MEMM is also
an improvement by exploiting positional information in
a more flexible way.",
acknowledgement = ack-nhfb,
articleno = "7",
fjournal = "ACM Transactions on Asian Language Information
Processing",
journal-URL = "http://portal.acm.org/browse_dl.cfm?&idx=J820",
keywords = "data sparseness problem; Markov property; MEMM;
pos-tagging; stationary hypothesis",
}
Related entries
- according,
5(2)146,
5(2)165,
7(2)7,
7(4)11,
8(1)3,
8(2)7,
9(2)6,
10(1)3,
10(4)19,
12(4)17,
13(2)9
- application,
1(2)103,
4(4)475,
6(4)2,
7(1)2,
7(2)7,
7(3)8,
7(4)11,
7(4)13,
8(2)7,
8(2)9,
8(3)10,
8(4)14,
9(2)7,
9(4)13,
10(2)10,
10(4)19,
11(4)17,
12(3)11
- article,
3(4)227,
4(3)321,
5(2)121,
6(2)6,
6(2)8,
6(4)3,
7(1)1,
7(1)3,
7(2)5,
7(2)6,
7(2)7,
7(3)8,
7(3)9,
7(4)11,
7(4)12,
7(4)13,
8(1)2,
8(1)3,
8(1)4,
8(2)6,
8(2)8,
8(2)9,
8(3)10,
8(3)11,
8(3)12,
8(4)14,
8(4)16,
8(4)17,
8(4)18,
9(1)2,
9(1)4,
9(2)6,
9(3)10,
9(3)11,
9(3)12,
9(4)13,
9(4)14,
10(1)3,
10(1)5,
10(1)6,
10(2)7,
10(2)9,
10(2)10,
10(3)12,
10(3)13,
10(3)14,
10(3)15,
10(4)17,
10(4)18,
10(4)20,
10(4)21,
11(1)1,
11(2)4,
11(2)5,
11(2)7,
11(3)8,
11(3)10,
11(3)11,
11(4)13,
11(4)14,
11(4)15,
11(4)16,
11(4)17,
11(4)18,
12(1)1,
12(1)3,
12(1)4,
12(2)5,
12(2)6,
12(2)7,
12(3)9,
12(3)10,
12(3)11,
12(3)12,
12(4)14,
13(1)1,
13(1)2,
13(1)3,
13(1)4,
13(2)6,
13(2)7,
13(2)8,
13(2)9,
13(3)12,
13(3)13,
13(4)16
- both,
6(2)6,
6(3)10,
7(1)1,
7(1)2,
7(1)3,
7(3)8,
8(2)7,
8(3)11,
8(3)12,
9(1)2,
9(1)4,
9(2)5,
10(1)2,
10(1)4,
10(1)6,
10(2)10,
10(3)13,
10(3)15,
10(4)20,
10(4)21,
11(2)4,
11(2)6,
11(2)7,
11(3)9,
11(4)18,
12(2)5,
12(2)7,
12(4)17,
13(2)9,
13(4)17
- complexity,
5(2)121,
6(2)8,
12(2)5
- core,
8(4)15,
10(1)4
- data,
2(2)143,
6(1)z,
6(1)z-1,
6(3)11,
7(1)3,
7(3)9,
7(4)13,
8(1)3,
8(2)7,
8(3)10,
8(3)11,
8(3)12,
8(4)16,
8(4)18,
9(2)6,
10(2)7,
10(3)12,
10(4)20,
11(2)4,
11(3)10,
11(3)11,
11(4)13,
11(4)14,
11(4)18,
12(1)1,
12(2)7,
12(3)9,
13(1)2,
13(1)3,
13(1)4,
13(4)16,
13(4)17,
13(4)18
- detail,
6(3)10,
9(2)5
- discussed,
8(4)14,
9(2)5
- effective,
4(2)78,
6(3)11,
7(4)12,
7(4)13,
8(1)2,
8(3)10,
9(2)5,
9(3)12,
10(2)10,
10(3)14,
10(4)17,
10(4)18,
11(2)4,
11(2)7,
11(4)18,
12(2)7,
12(4)14,
13(3)13,
13(4)16
- effectively,
6(2)8,
7(2)7,
7(4)12,
8(3)12,
9(1)1,
11(3)10,
12(1)2
- element,
5(2)146,
7(3)8,
9(3)11,
13(1)2
- English,
2(3)245,
4(2)135,
5(2)89,
5(2)121,
5(3)245,
6(2)6,
6(3)11,
6(4)2,
7(1)1,
7(4)11,
8(2)9,
8(4)15,
8(4)16,
8(4)17,
9(1)1,
9(1)3,
9(2)7,
9(3)12,
9(4)14,
9(4)15,
10(1)2,
10(1)4,
10(2)8,
10(3)14,
10(3)15,
10(4)17,
11(2)4,
11(2)5,
11(2)6,
11(3)8,
11(3)11,
12(2)5,
12(3)12,
12(4)14,
12(4)17,
13(1)1,
13(4)16
- enhance,
10(4)20,
11(2)7,
13(2)8
- entropy,
9(2)6,
12(4)14
- evaluated,
9(1)2,
10(2)9
- experiment,
2(2)101,
2(2)143,
5(2)146,
5(2)165,
5(3)245,
6(2)8,
7(1)1,
7(1)2,
7(1)3,
7(2)5,
7(4)11,
8(1)2,
8(2)6,
8(3)11,
8(4)17,
9(2)6,
9(2)7,
9(3)11,
9(3)12,
10(4)20,
11(2)4,
11(2)5,
11(2)7,
11(3)10,
11(3)11,
11(4)15,
11(4)17,
12(1)2,
12(2)5,
12(2)7,
12(3)9,
12(3)11,
12(3)12,
12(4)16,
12(4)17,
13(1)2,
13(1)3,
13(2)6,
13(2)8,
13(3)13,
13(4)18
- experimental,
5(2)121,
6(2)6,
7(2)5,
7(2)6,
7(2)7,
7(3)10,
7(4)13,
8(1)2,
8(1)4,
8(2)9,
9(1)1,
9(1)2,
10(2)7,
11(3)9,
11(4)14,
12(3)10,
12(4)14,
13(2)7
- exploit,
7(1)2
- exploiting,
9(4)14,
10(1)4,
11(4)16,
12(4)16
- flexible,
4(2)111,
7(1)1,
10(4)17
- Furthermore,
7(1)1,
7(4)11,
8(4)17,
9(2)6,
11(2)6,
12(1)2,
12(2)7,
12(4)16,
13(1)1
- hypothesis,
6(2)6,
8(2)6,
11(4)16
- improvement,
4(3)280,
5(2)121,
7(1)2,
7(1)3,
7(3)8,
7(3)10,
8(1)4,
8(3)10,
8(4)15,
8(4)16,
9(1)3,
9(3)11,
10(2)8,
11(4)17,
11(4)18,
12(1)1,
12(2)7,
12(3)11,
13(3)12,
13(3)14,
13(4)16,
13(4)17
- including,
5(2)121,
7(1)3,
7(2)7,
8(1)3,
8(2)6,
9(1)1,
9(2)7,
9(3)11,
10(3)12,
11(4)18,
13(4)16
- information,
1(1)65,
1(1)83,
1(4)281,
2(3)245,
2(3)295,
3(1)1,
3(4)227,
4(2)57,
4(2)78,
4(3)243,
4(3)357,
4(4)375,
4(4)475,
5(1)44,
5(2)89,
5(3)264,
5(4)291,
5(4)296,
5(4)323,
6(4)2,
7(1)2,
7(1)3,
7(2)5,
7(3)8,
7(4)12,
8(1)2,
8(1)3,
8(3)10,
8(3)11,
8(4)15,
8(4)16,
8(4)17,
9(1)1,
9(2)7,
9(3)9,
9(3)10,
9(3)11,
9(3)12,
9(4)13,
9(4)14,
9(4)15,
10(2)8,
10(2)10,
10(3)15,
10(3)16,
10(4)19,
10(4)20,
10(4)21,
11(1)2,
11(2)6,
11(2)7,
11(4)15,
11(4)18,
12(2)5,
12(3)11,
12(4)16,
13(2)7,
13(3)13
- issue,
3(1)1,
3(2)87,
3(4)213,
4(3)237,
4(4)375,
5(4)291,
6(3)10,
7(1)2,
7(1)3,
7(2)4,
7(3)9,
7(4)11,
8(1)1,
8(2)5,
8(2)6,
8(3)12,
8(4)13,
9(3)9,
10(1)1,
10(3)11,
10(3)13,
10(4)18,
11(1)2,
11(2)6,
11(4)12
- labeling,
5(3)228,
7(4)13,
8(3)12,
10(3)13,
13(1)2
- Liu, Bingquan,
10(4)21
- Markov,
3(2)146,
7(3)10,
8(2)6,
11(3)9,
11(4)15,
13(3)12
- maximum,
8(2)6,
9(2)6,
12(1)1,
12(3)9
- more,
5(2)146,
6(3)10,
7(3)9,
7(4)13,
8(1)4,
8(2)7,
8(3)12,
8(4)14,
8(4)16,
9(1)2,
9(2)6,
9(3)11,
9(3)12,
10(1)4,
10(4)19,
11(2)4,
11(2)7,
12(1)1,
12(1)2,
12(3)9,
13(1)1,
13(1)3,
13(1)4,
13(2)8,
13(4)18
- natural,
1(2)123,
3(1)11,
5(2)121,
5(4)291,
7(1)1,
7(4)13,
8(1)2,
8(2)9,
8(4)13,
8(4)14,
8(4)16,
8(4)19,
9(2)6,
9(3)11,
9(4)15,
10(3)14,
10(4)20,
11(1)2,
11(4)14,
11(4)15,
12(1)3,
13(3)14
- performing,
7(4)12,
9(3)12
- present,
5(2)89,
5(2)165,
6(3)10,
6(4)2,
7(1)2,
7(1)3,
7(2)7,
7(3)9,
7(4)11,
7(4)13,
8(1)3,
8(2)6,
8(2)7,
8(2)8,
8(3)10,
8(4)14,
8(4)16,
8(4)17,
8(4)18,
8(4)19,
9(1)1,
9(1)2,
9(1)3,
9(2)6,
9(4)14,
10(1)4,
10(1)6,
10(2)7,
10(3)14,
10(4)18,
10(4)19,
11(1)2,
11(1)3,
11(2)4,
11(2)5,
11(2)6,
11(3)10,
11(4)13,
12(1)3,
12(2)5,
12(3)9,
12(3)11,
12(4)15,
13(2)8,
13(4)16
- problem,
6(3)9,
6(3)11,
6(4)1,
7(1)2,
7(2)7,
7(3)10,
8(1)2,
8(2)9,
8(3)10,
8(4)19,
9(1)1,
9(1)3,
9(2)5,
9(4)13,
10(1)2,
10(1)4,
10(3)14,
10(3)16,
10(4)21,
11(3)8,
11(3)11,
11(4)17,
11(4)18,
12(1)2,
12(1)3,
12(2)7,
12(3)10,
12(3)12,
12(4)16,
13(2)8,
13(3)14,
13(4)17
- processing,
3(1)1,
3(4)213,
4(4)375,
5(2)121,
5(4)291,
6(3)9,
6(3)10,
6(4)3,
7(1)1,
7(1)3,
7(2)7,
7(4)13,
8(1)2,
8(2)9,
8(4)13,
8(4)14,
8(4)16,
8(4)18,
8(4)19,
9(2)5,
9(2)6,
9(3)11,
9(4)15,
10(3)11,
10(3)14,
10(4)20,
11(1)2,
11(3)9,
11(4)15,
12(1)3,
12(3)10,
13(1)1,
13(2)7
- property,
8(3)11,
8(4)14,
9(2)6,
11(3)9
- proposed,
5(2)121,
5(2)165,
7(1)1,
7(1)2,
7(3)9,
7(3)10,
7(4)11,
7(4)13,
8(1)4,
8(2)6,
8(3)10,
8(3)11,
8(4)14,
8(4)19,
9(1)1,
9(2)5,
9(2)7,
10(2)7,
10(2)9,
10(3)14,
10(4)18,
11(1)3,
11(2)5,
11(2)6,
11(2)7,
11(3)8,
11(3)9,
11(3)10,
11(3)11,
11(4)16,
11(4)17,
12(1)4,
12(2)5,
12(2)7,
12(3)12,
12(4)16,
12(4)17,
13(2)6,
13(2)8,
13(3)13,
13(4)18
- related,
5(1)22,
6(3)10,
6(4)2,
7(2)6,
7(3)8,
10(2)10,
10(4)20,
11(2)5,
11(2)7,
12(1)3
- representation,
1(3)207,
8(2)7,
8(3)12,
8(4)14,
11(4)15,
13(2)9
- result,
4(2)135,
5(2)121,
5(2)146,
5(2)165,
6(2)6,
6(3)9,
6(3)11,
6(4)3,
7(1)2,
7(2)5,
7(2)6,
7(2)7,
7(3)8,
7(3)10,
7(4)11,
7(4)12,
7(4)13,
8(1)2,
8(1)3,
8(1)4,
8(2)6,
8(2)9,
8(3)10,
8(3)12,
8(4)14,
8(4)15,
8(4)16,
8(4)17,
8(4)18,
8(4)19,
9(1)1,
9(1)2,
9(2)5,
9(2)6,
9(2)7,
9(3)11,
9(3)12,
9(4)14,
10(1)2,
10(2)7,
11(2)4,
11(2)5,
11(3)8,
11(3)9,
11(3)11,
11(4)13,
11(4)14,
11(4)15,
12(1)3,
12(1)4,
12(2)5,
12(2)7,
12(3)9,
12(3)10,
12(3)11,
12(4)14,
12(4)16,
13(1)1,
13(1)4,
13(2)6,
13(2)7,
13(2)9,
13(3)11,
13(3)12,
13(3)14
- sequence,
5(2)165,
6(3)10,
7(3)9,
8(1)2,
8(1)3,
9(2)7,
9(3)12,
9(4)14,
10(1)4,
12(1)2,
12(1)3,
12(3)9,
12(3)10,
12(4)17,
13(1)2
- several,
6(2)6,
6(4)3,
7(2)5,
7(2)7,
7(3)10,
8(3)10,
8(4)16,
8(4)17,
8(4)18,
9(3)12,
11(2)6,
11(4)13,
11(4)16,
12(1)2,
13(3)12,
13(3)14
- smoothing,
6(3)9
- solve,
8(3)10,
10(4)20,
11(3)8,
12(3)10,
12(3)12,
12(4)16
- space,
6(2)6,
7(4)13,
11(2)5,
11(3)9
- study,
4(2)159,
4(3)243,
5(2)121,
5(2)146,
5(2)165,
5(3)209,
6(2)6,
8(1)3,
8(1)4,
8(4)16,
9(2)5,
9(2)6,
9(2)7,
9(3)11,
10(2)10,
10(3)12,
10(4)17,
10(4)18,
11(1)3,
11(2)6,
11(3)9,
11(3)11,
11(4)14,
13(1)3,
13(2)7,
13(3)11,
13(3)12,
13(3)14
- task,
2(1)49,
5(2)89,
5(2)121,
6(3)11,
6(4)1,
6(4)3,
7(1)1,
7(1)2,
7(2)7,
7(3)10,
7(4)13,
8(1)4,
8(2)7,
8(4)15,
8(4)16,
9(1)4,
9(2)6,
9(3)10,
9(4)14,
9(4)15,
10(1)5,
10(3)14,
10(4)18,
10(4)20,
10(4)21,
11(1)2,
11(3)8,
11(3)11,
11(4)13,
11(4)14,
11(4)17,
11(4)18,
12(1)2,
12(1)3,
12(2)5,
12(2)7,
12(3)9,
12(4)17,
13(2)10,
13(4)17
- technique,
2(1)63,
3(4)243,
5(2)89,
6(1)z,
6(2)8,
6(3)9,
6(4)2,
6(4)3,
7(2)5,
7(2)7,
7(3)8,
7(4)12,
8(4)18,
9(1)3,
9(2)5,
10(1)4,
10(2)9,
10(2)10,
10(4)21,
11(1)1,
12(2)6,
12(3)9,
12(3)11,
12(4)14,
13(2)8,
13(3)12,
13(3)13,
13(4)18
- tool,
12(1)1
- traditional,
5(2)121,
7(4)11,
8(2)6,
12(1)1,
12(4)16
- Wang, Xiaolong,
10(4)21
- way,
5(2)89,
8(3)12,
8(4)14,
9(2)5,
10(4)17
- yield,
8(3)12,
9(3)12,
12(2)7