Entry Yavuz:2012:BFB from tissec.bib

Last update: Sun Oct 15 02:58:48 MDT 2017                Valid HTML 3.2!

Index sections

Top | Symbols | Numbers | Math | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

BibTeX entry

@Article{Yavuz:2012:BFB,
  author =       "Attila A. Yavuz and Peng Ning and Michael K. Reiter",
  title =        "{BAF} and {FI-BAF}: Efficient and Publicly Verifiable
                 Cryptographic Schemes for Secure Logging in
                 Resource-Constrained Systems",
  journal =      j-TISSEC,
  volume =       "15",
  number =       "2",
  pages =        "9:1--9:??",
  month =        jul,
  year =         "2012",
  CODEN =        "ATISBQ",
  DOI =          "https://doi.org/10.1145/2240276.2240280",
  ISSN =         "1094-9224 (print), 1557-7406 (electronic)",
  ISSN-L =       "1094-9224",
  bibdate =      "Tue Jul 31 17:02:31 MDT 2012",
  bibsource =    "http://portal.acm.org/;
                 http://www.math.utah.edu/pub/tex/bib/tissec.bib",
  abstract =     "Audit logs are an integral part of modern computer
                 systems due to their forensic value. Protecting audit
                 logs on a physically unprotected machine in hostile
                 environments is a challenging task, especially in the
                 presence of active adversaries. It is critical for such
                 a system to have forward security and append-only
                 properties such that when an adversary compromises a
                 logging machine, she cannot forge or selectively delete
                 the log entries accumulated before the compromise.
                 Existing public-key-based secure logging schemes are
                 computationally costly. Existing symmetric secure
                 logging schemes are not publicly verifiable and open to
                 certain attacks. In this article, we develop a new
                 forward-secure and aggregate signature scheme called
                 Blind-Aggregate-Forward (BAF), which is suitable for
                 secure logging in resource-constrained systems. BAF is
                 the only cryptographic secure logging scheme that can
                 produce publicly verifiable, forward-secure and
                 aggregate signatures with low computation,
                 key/signature storage, and signature communication
                 overheads for the loggers, without requiring any online
                 trusted third party support. A simple variant of BAF
                 also allows a fine-grained verification of log entries
                 without compromising the security or computational
                 efficiency of BAF. We prove that our schemes are secure
                 in Random Oracle Model (ROM). We also show that they
                 are significantly more efficient than all the previous
                 publicly verifiable cryptographic secure logging
                 schemes.",
  acknowledgement = ack-nhfb,
  articleno =    "9",
  fjournal =     "ACM Transactions on Information and System Security",
  journal-URL =  "http://portal.acm.org/browse_dl.cfm?idx=J789",
}

Related entries